
Jeremy Clark

Transparent
Dishonesty:

Front-running
Attacks on
Blockchain

FUNDING & PARTNERS:

MAHSA MOOSAVI, CONCORDIA / OFFCHAIN LABS

SHAYAN ESKANDARI, CONCORDIA / CONSENSYS DILIGENCE

JEREMY CLARK, CONCORDIA

method(x)

Cloud

method(x)

method(x)

method(x)

return z

method(x)

Blockchain

method(x)

method(x) method(x)

method(x)

method(x)

method(x) method(x)

method(x)

method(x)method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)
method(x)

method(x)

method(x)

method(x)

method(x) method(x)

method(x)

method(x)

method(x) method(x)

method(x)

method(x)method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)
method(x)

method(x)

method(x)relay to all nodes

method(x)

method(x) method(x)

method(x)

method(x)

method(x) method(x)

method(x)

method(x)method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)
method(x)

method(x)

method(x)visible pool of pending transactions

method(x)

method(x) method(x)

method(x)

method(x)

method(x) method(x)

method(x)

method(x)method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)
method(x)

method(x)

method(x) all agree on z

method(x)

method(x) method(x)

method(x)

method(x)

method(x) method(x)

method(x)

method(x)method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)
method(x)

method(x)

method(x)

- Transactions are fi

- Execution is done in assembly

- Every opcode is assigned a cost in “gas”

- Every block has a gas limit

- User clients quote how much ETH (small amount called gwei) they are willing to pay
per unit of “gas”

- Nodes will fiff

- High gas = high priority for inclusion

method(x)

method(x) method(x)

method(x)

method(x)

method(x) method(x)

method(x)

method(x)method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)

method(x)
method(x)

method(x)

method(x)

- You code your fi

- The Ethereum’s global network of servers runs your code for you

- While it is slow and can only run (relatively) simple code, it will run exactly as coded

- In 2020, decentralized fi

Story #1

ICO

ICO hype circa 2017

ICO

ICO hype circa 2017

Scalpers

MetaMask Exchange

Status: Fair ICO

Status: Fair ICO

- Dynamic Cap/Ceiling // Maximum deposit amount per ceiling
-

Status: Fair ICO

- Dynamic Cap/Ceiling // Maximum deposit amount per ceiling
- Limit GasPrice // require(gasPrice < 50 gwei)

Status: Fair ICO

- We define:
- Successful transaction: resulted in token purchase
- Failed transaction: failed to purchase any tokens (high gasPrice, over cap, etc)
- Result of buyers treating Status like a generic ICO

- June 2017
- Raised: ~300,000 ETH (~$90M USD) in 16 hours
- Refunded 111,161 attempts
- Total of: 347,154 ETH

Status: Fair ICO

Status: Fair ICO

Status: Fair ICO

Status: Fair ICO

Includes F2Pool transactions

Censored successful transactions

Status: Fair ICO

(1)

(2)

(3)

(2)

(2)

(2)

Story #2

FOMO3D

FOMO3D

A countdown timer

Every ticket purchase increases the timer by 30 seconds

The last ticket when the timer reaches 00:00:00 wins the pot

Fomo3D

Deploy

“Walter”

Ethereum
- “Walter” deploys contracts that

has high gas consumption

FOMO3D

Fomo3D

buyXid()

“Walter”

Ethereum

00:02:50

FOMO3D

Fomo3D
“Walter”

Ethereum

00:02:30
buyX

id()

GasPrice: 501 GWei

FOMO3D

FOMO3D

osolmaz.com

FOMO3D

FOMO3D

versus 4,000,000

FOMO3D

~$3M

What do these stories have in common?
- All (full) nodes in the network have access to “privileged

information”
- Gas auction: bribing miners with high fees (GasPrice)

- Miners/Validators/Proposers (nodes that create blocks)
have extra power: order transactions in blocks that they
create
- Miner Extractable Value (MEV)

What do these stories have in common?

All examples of “front-running” attacks 
But are they all the same attack?

Taxonomy of Front-running attacks

Attack Type Description Example

Displacement Not important to the adversary for original
function call to run after her function.

Domain
Name
Registration

Insertion Important to the adversary for original function
call to run after her function.

Asset
Trading

Suppression
(aka block stuffing) Run function and delay original function call Auction

Sniping

DISPLACEMENT ATTACK

Story 1: Status ICO

Story 2: FOMO3D

SUPPRESSION ATTACK 

(BLOCK STUFFING ATTACK)

Top 25 DApps
Based on recent user activity

DAppRadar.com

September 2018

Four categories

Studied at least one example
from each category

All had front-running issues

Added ICOs

See the paper for detailed case studies

Case Study

http://DAppRadar.com

Key Mitigations

1. Transaction Sequencing

2. Confidentiality

3. Design Practices

4. Embrace It

- Remove the miner’s ability to arbitrarily order transactions

- Take a consensus on what transactions were seen first (Aequitas)

- Have a third party DApp (“sequencer”) order transactions (Wendy,
Chainlink)

- Sort pseudorandomly (e.g. Canonical Transaction Ordering Rule
(CTOR) by Bitcoin Cash ABC)

Transaction Sequencing

Confidentiality

1 Code of the DApp

2 Current state of the DApp

3 Name of the function being invoked
4 Parameters supplied to the function
5 Address of the contract the function is being invoked on
6 Identity of the sender.

Limit the visibility of DApps. But what does that mean???

Commit/Reveal: (3,4)-confidential

Encryption/Secret Sharing: (3,4)-confidential

TEEs: (2,3,4)-confidential

Privacy coins: (6)-confidential

Confidentiality

1 Code of the DApp

2 Current state of the DApp
3 Name of the function being invoked
4 Parameters supplied to the function
5 Address of the contract

6 Identity of the sender.

Design Practices

Assume front-running is unpreventable —> Remove any benefit from it

Remove the importance of transaction ordering or time

Call market design instead of a time-sensitive order book

See our paper “Trading On-Chain: How Feasible is Regulators’ Worst-Case
Scenario?”

ERC20 allowance functionality, “approve()”, was not designed with front-
running in mind

See our paper “Resolving the Multiple Withdrawal Attack on ERC20 Tokens"

Embrace It

Say a transaction nets the user who runs it 1M ETH

A bot will stage every pending transaction they see, substituting
themselves as the originator and measuring if it results in profits (bots are
dumb and do not know what they are actually doing)

A bot will find this transaction and steal it for themself by with higher gas

Bot #2 will find this transaction and steal it with higher gas… Bot 3, Bot
4, Bot n… This leads to congestion

Embrace It

Infrastructure exists for bots to “search” for MEV opportunities and
“builds” a block of transactions

The block is given off-chain to a “relay” who compares blocks given to it,
looking for the one that will profit the miner (validator / proposer) the most

The winning block is provided by the relay to the proposer who can use it
or not (but generally does because it is more profitable than what they
can find individually)

Concluding Remarks

Front-running is a pervasive issue in Ethereum DApps

Increase awareness of these type of attacks

We need usable DApp layer & blockchain-level solutions

We highlight this as an important research area.

@PulpSpy

Q

