
Revisiting Silent Coercion

David Chaum1, Richard T. Carback1, Jeremy Clark2(B), Chao Liu3,
Mahdi Nejadgholi2, Bart Preneel4, Alan T. Sherman3, Mario Yaksetig1,

Zeyuan Yin6, Filip Zagórski5, and Bingsheng Zhang6

1 xx.network, Los Angeles, USA
2 Concordia University, Montreal, Canada

j.clark@concordia.ca
3 Cyber Defense Lab, University of Maryland, Baltimore County (UMBC),

Baltimore, USA
4 COSIC, KU Leuven and imec, Leuven, Belgium

5 Department of Computer Science, Wroclaw University of Technology,
Wroclaw, Poland

6 Zhejiang University, Hangzhou, China

Abstract. We revisit “silent coercion” where an adversary gains access
to a voter’s credential without the voter’s knowledge in an E2E verifiable,
coercion-resistant Internet voting system. We argue that in this setting,
casting an intended vote is impossible since the cryptographic backend
can no longer distinguish the voter and adversary. However, we affirm
that the voter can still act to nullify adversarial ballots, which is prefer-
able to inaction. We provide a new instantiation of nullification using
zero-knowledge proofs and multiparty computation, which improves on
the efficiency of the current state-of-the-art. We also demonstrate an
example voting system—VoteXX—that uses nullification. Our nullifica-
tion protocol can complement new and existing techniques for coercion
resistance (which all require voters to hide cryptographic keys from the
coercer), providing a failsafe option for voters whose keys leak.

1 Our Contributions in Context

A well-studied application of cryptography is to voting systems, including those
used in real-world governmental elections [5]. Among other things, cryptogra-
phy can help provide election integrity (the final tally correctly reflects all bal-
lots exactly as cast), while maintaining secret ballots—referred to as end-to-end
(E2E) verifiable voting. These schemes generally offer unconditional integrity
and rely a set of trustees, which constitute an EA where ballot secrecy is pre-
served if .m-out-of-. n trustees are honest (for a configurable .m and . n). We study
undue influence and credential loss in the setting of remote or Internet voting.

An abstract of this paper appeared previously [8]. A technical report with expanded
details and security proofs is also available [9].
c The Author(s) 2026
D. Duenas-Cid et al. (Eds.): E-Vote-ID 2025, LNCS 16028, pp. 38–54, 2026.
https://doi.org/10.1007/978-3-032-05036-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-05036-6_3&domain=pdf
https://doi.org/10.1007/978-3-032-05036-6_3

Revisiting Silent Coercion 39

Fig. 1. Idea maze for protecting voters from coercion and credentials theft. Idea maze
for protecting voters under various forms of credential loss or coercion. Nullification
includes both passive approaches (e.g., Caveat Coercitor) and our new active mecha-
nism.

1.1 Ballot Privacy is not Always Enough

Definitions of ballot privacy roughly state the following: an adversary with access
to the complete cryptographic transcript of the election plus control over a
bounded set of other voters and election officials (and knowledge of everything
the corrupted parties see), and access to Alice’s receipt cannot establish how
Alice voted any better than if they only had access to the final tally alone.

An implicit assumption is that Alice follows the protocol with a self-interest in
preserving her privacy. What if Alice sabotages her own privacy? First, consider
why. If the system design allows for receipts to leak information about how
they were cast, Alice might be able to take payment for casting her vote for a
specified candidate, and is incentivized to have her receipt serve as proof that she
complied. She could also be threatened or coerced to vote a particular way, and
an adversary savvy to the details of the voting system could demand a receipt
constructed according to the coercion instruction. As common in the literature,
we use the term coercion resistance to mean a system defeats both vote buying
and actual coercion.

A prominent example of a remote cryptographic voting system that provides
basic ballot secrecy but not coercion resistance is Helios [2, 3], which originally
included a “coerce me” button that would spit out a proof of how the voter
voted [2] (a form of critical design to educate the voter on the difference between
voter privacy and coercion-resistance). Coercion resistance is challenging in a
remote setting because the adversary can observe the voter cast their ballot, or
more simply, take the voter’s authentication credentials and vote on the voters’
behalf themselves.

40 D. Chaum et al.

1.2 Coercion Resistance Mechanisms

Table 1. Five basic mechanisms from the literature for coercion resistance. The table
excludes procedural in-person fallback mechanisms (e.g., Swiss postal voting) in favor
of purely cryptographic protocols applicable to remote settings.

Type Example Non-Standard Assumptions
Fake credentials JCJ (2005) [24] Voter maintains at least one secret (real private key) from

coercer and registers prior to coercion. Voter can simulate zero
knowledge proofs to match lies to coercer. Voter knows of one
honest election trustee. Under coercion, voter can always vote
their intention but requires a moment alone (any time before or
after coercion).

Masked ballots WeBu09 (2009) [33] Voter maintains at least one secret (integer offset) from coercer
and registers prior to coercion. Voter can perform arithmetic in
head before lying to coercer. Under coercion, voters can at least
spoil their ballot.

Panic passwords Selections (2011) [12] Voter maintains at least one secret (real password) from coercer
and registers prior to coercion. Voter can make up a fake
password before lying to coercer. Under coercion, voter can
always vote their intention but requires a moment alone (any
time before or after coercion).

Decoy ballots RS-Voting (2012) [7] Not all voters have ballots and voters can opt to receive a decoy
ballot that will not be counted. Voter registers prior to coercion.
Under coercion, voters can use a decoy or deny having a real
ballot.

Re-voting (with E2E) VoteAgain (2020) [26] Voter maintains an authentication mechanism that cannot be
duplicated by the coercer (or eliminated). Voter must submit a
corrective ballot after coercion. Assuming this, voter can always
vote their intention.

Many papers have examined a relatively small set of approaches to providing
coercion resistance (see Table 1), which we assume are overlayed on an E2E
cryptographic voting scheme that provides ballot privacy and tally correctness.

Four of the approaches in Table 1 are based on faking information (creden-
tials, masks, panic passwords, and decoy ballots) to give to the coercer. Decoy
ballots can be distinguished by providing a game-theoretic solution (voters can
request fake ballots from the EA and use these to flood the market, driving down
the economic feasibility of coercion/vote selling) rather than a cryptographic one
(although cryptography is used in other aspects of the system). The remaining
three make similar cryptographic assumptions about voters being able to keep
secrets and deceive the coercer.

The other approach, re-voting, enables votes to be updated over time, count-
ing only the last ballot. Under coercion, a voter allows the adversary to cast
their ballot for them, but then secretly changes it after. This mechanism is less
rigorous than the fake ballot mechanism as the adversary can simply ensure the
voter does not have the ability to change their vote after coercion (by supervising
the voter until the election ends). For this reason, re-voting is often offered in a
hybrid remote/in-person model. Voters vote online optimistically and then can
correct coercion in-person as necessary.

Revisiting Silent Coercion 41

Table 2. Types of key loss. Traditional coercion-resistant voting strategies consider
the first row (“normal conditions”), whereas we argue all rows of key loss (see Eyal [16])
should be addressed.

Type User has key? Adversary has key? Countermeasure
Normal conditions Yes No Coercion resistance
Lost secret No No Inalienable authentication
Leaked secret Yes Yes Nullification
Stolen secret No Yes Inalienable authentication

1.3 Relationship to Authentication

It is maybe not be apparent but coercion resistance is related directly to authen-
tication. As pointed out by Hirt and Sako [21, 22], a basic axiom of coercion resis-
tance is: if the adversary has/knows/is everything that the voter has/knows/is,
the voting system cannot distinguish the voter from the adversary, and there-
fore cannot provide a mechanism to register the true voter’s vote and not the
adversary’s. Reconsider the coercion-resistance mechanisms above and see that
they rely on a secret value or authentication mechanism that can still distinguish
a voter under coercion. This is also why most coercion resistance mechanisms
assume the voter can register prior to coercion, otherwise the adversary can
coerce the voter to register with authentication values only the coercer knows.

For fully online voting, maintaining secrets is particularly challenging because
digital forms of secrets are generally “something you have/know” rather than
“something you are,” and secrets can be stolen through a variety of covert means,
including malware and physical access to the voter’s device. Directly stealing
a secret side-steps known coercion-resistant mechanisms—each assumes some-
where that the voter knows of, and possibly plays a role in, resisting coercion
(such as providing a fake secret or by voting again with their real secret).

We have used the term “stolen” loosely. In fact, there are three specific failures
(see Table 2) a user can experience in maintaining a secret value [16]: secrets can
be lost, where neither the user or adversary has the credential; leaked, where the
user and adversary both have the credential; or stolen, where the user loses the
credential and the adversary gains the credential (so only the adversary has the
credential).

For lost and stolen secrets (Rows 2 and 4), the voter loses their secret. Our
countermeasure is to ensure voters cannot lose their secret through inalienable
authentication, which is a protocol where the voter proves that they have com-
mitted their secret to their own human memory without revealing the secret.

The threat of a leaked credential (Row 3) is under-appreciated in the vot-
ing literature. It is easy to think that coercion resistance already covers this
attack; however, coercion resistance addresses only overt attempts by a coercer
to learn the key, whereas we also need to consider covert attacks for which voters
may be unaware. Grewal et al. [18] term leaked credentials as “silent coercion.”
The reader might not consider this “coercion” as there is no pressure or threat,

42 D. Chaum et al.

however we do not attempt to adjust the terminology already accepted in the
voting literature.

1.4 Silent Coercion

It is easy to think Row 3 is an unsolvable problem: if the adversary knows
every secret the voter knows, the remote system cannot distinguish the voter
and adversary. The truth of this unpleasant fact implies that a dimension of
the problem indeed is unsolvable: the voter cannot always cast their true intent
and prevent the adversary from doing the same. Nevertheless, the voter still has
a course of action: the voter (or either party) can sabotage (nullify) the vote,
preventing themselves and the adversary from casting a ballot.

Caveat Coercitor [18] is an extension to JCJ [24]. Like JCJ, it provides coer-
cion resistance through fake credentials. However it adds two extensions: (1) any
vote cast multiple times with the same credential but different candidates (in at
least one occurrence) is discarded from the tally, and (2) the number of discarded
ballots is made public as an indicator of the level of coercion that was present in
the election. Caveat Coercitor has two main drawbacks. First is the complexity
of the election trustees tabulating the tally. It inherents the quadratic (in the
number of cast ballots) complexity of JCJ and the coercion evident extension
adds a linear work making it cubic. As JCJ is considered too slow for practical
election sizes already [13], Caveat Coercitor is mainly a theoretical advancement.
The second drawback is more minor but Caveat Coercitor cannot compose eas-
ily with all the coercion resistant mechanisms in Table 1—it works with fake
credentials and perhaps others but it cannot work with revoting, as voters who
change their mind are excluded from the tally.

We argue there is room for more work on nullification and exploring different
approaches might be worthwhile. This paper presents a different design that
sidesteps these two drawbacks of Caveat Coercitor—our extension (a) is mostly
linear with one quadratic component that can run concurrently [15] over the
nullification period and (b) our extension can compose with revoting (along
with fake credentials and panic passwords).

Our design also differs from Caveat Coercitor where nullification is an active
task taken by a voter (or an enlisted helper) in responses to a ballot that does not
reflect their voting intent. The passive nullification of Caveat Coercitor removes
a task for the voter, likely improving usability, however our active nullification
offers finer grain control: it can be triggered on an adversarial ballot even if the
voter abstained from voting, and it can be not triggered in the case of a re-
vote where the voter changes their mind. Whether more control through more
decisions is a net benefit for voters will likely divide researchers, but we think it
is worth laying out multiple options in the academic literature.

1.5 Other Examples of Nullification

Other instances of nullification appear in voting systems that allow voters to sub-
mit encrypted deltas to neutralize or adjust their previous votes. In the masked

Revisiting Silent Coercion 43

voting approach of Wen and Buckland [33], each voter receives a secret mask
and casts a ballot encrypted as the difference between their vote and this mask.
A coerced voter can later submit a masked ballot that offsets their original vote,
effectively nullifying it in the additive tally. A similar pattern occurs in the
update scheme of Kulyk, Teague, and Volkamer [25], where a voter’s row on the
bulletin board (BB) is multiplicatively combined from multiple encrypted values.
To cancel their vote, a voter can submit the multiplicative inverse of their earlier
choice, neutralizing its effect on the final tally. These schemes provide important
protections against overt coercion or vote selling, where the voter is aware of and
responding to coercion. However, they do not address silent coercion scenarios,
where an adversary obtains the voter’s credentials and casts a ballot without
the voter’s knowledge. In other words, while these are examples of nullification,
they are not designed to prevent or recover from undetected adversarial voting,
as in Caveat Coercitor [18] and our work.

As an additional remark, the cryptographic structure of our nullification
protocol (see Sect. 3.1) parallels the proof techniques used by Kulyk, Teague,
and Volkamer [25]. In both cases, the core idea is to construct a zero-knowledge
proof that supports a disjunctive claim—either the value was submitted by an
eligible voter who knows the signing key or the value has no effect (e.g., add a
0 or multiply by 1).

1.6 Our Contributions

We provide a protocol for nullification that can work in concert to resist silent
coercion where voter keys or secrets are leaked to the adversary.

The mechanism is an overlay or add-on for coercion resistant voting system
and does not compete with any of the mechanisms in Table 1. In fact, even within
the table, the basic mechanisms are complimentary to some extent (e.g., an E2E
voting system might use panic passwords and revoting and decoy ballots). The
basic idea of our paper is that if a voter is not coerced, they vote as normal; if
they are coerced but their key is not leaked, they use a mechanism from Table 1;
if their key is leaked, they use nullification which is better than doing nothing
(see Fig. 1).

With this said, we want to be clear that our nullification protocol cannot
be simply glued onto Helios or JCJ or Selections. Our protocol expects a cer-
tain interface to work, and some additional changes to the voting system can
greatly enhance its usability and safety. For this reason, we do sketch a basic
voting system (VoteXX) to demonstrate how a voting system can compose with
nullification.

2 Preliminaries

We adopt a number of common cryptographic primitives from the voting liter-
ature. All operations are performed in the same DDH-hard elliptic curve group.
Digital signatures are performed with the Schnorr signature scheme. Encryption

44 D. Chaum et al.

is performed with exponential Elgamal [14], which can be augmented with dis-
tributed key generation (DKG) and threshold decryption (for .m out of . n key
holders [31]). As standard in the voting literature, we assume the EA has a
threshold public key and do not collude beyond the threshold. We use standard
Σ−Protocols to prove knowledge of discrete logarithms (Schnorr [32]), knowl-
edge of representations (Okamoto [29]), and knowledge of Diffie-Hellman tuples
(Chaum-Pedersen [11]), which also corresponds to ElGamal re-randomizations
and decryptions. We also use techniques to allow the trustees to compute jointly,
verifiably (i.e., produce Σ−Protocol proofs), and privately on ElGamal cipher-
texts the following: (i) a random shuffle of ciphertexts [28], and (ii) the evalu-
ation of an binary gate operations based on their logic lookup table (mix and
match [23]).

3 New Nullification Protocol

We explain our nullification protocol by stating its front-end requirements and
introducing the semi-trusted “hedgehog” agents.

3.1 Front-End Requirements

Our nullification protocol is an overlay, add-on, or “back-end” for the “front-
end” of a E2E coercion resistant voting schemes. As a backend, nullification
adds protection for Row 3 in Table 2 to systems that already protect against
Row 1. However none of these front-ends will “just work” with nullification,
they need to be modified to compose correctly. For space, we cannot fully detail
how to add nullification to every scheme however we will sketch how to do
it with JCJ [24] and Selections [12], as well as showing a new front-end that
adds an additional feature (called hedgehogs). JCJ is based on fake credentials,
and Selections allows re-voting in addition to panic passwords, so Selections as
augmented below actually provides three lines of defence against coercion (panic
passwords, re-voting, and nullification).

The details of E2E voting systems vary widely but we assume a basic archi-
tecture. Registration phase: voters register for the election which may or may
not post registration data to a BB—an append-only, non-equivocating broadcast
channel. Voting phase: voters cast ballots which do not reveal how they voted
and are posted on the BB. Tallying Phase: the votes on the BB are used to
produce a final tally. Finally we introduce a Nullification Phase: voters (or their
agents) have a window of time to inspect the cast ballots and potentially nullify
adversarial ballots submitted using their key.

In JCJ, a ballot from the voter comprises their vote, the asserted credential
(secret key) of the voter (we place this in the exponent to make it easier to
compare side-by-side with Selections), and some zero knowledge proofs of cor-
rect formation that we omit: . vote , gŝk . In Selection, a ballot consists of

. vote , gŝk, pk where .ŝk is the asserted password of the voter, and . pk is the

Revisiting Silent Coercion 45

entry from the voting roster (created at registration time). If .gŝk = pk, the vote
is tallied, otherwise it is discarded (later after anonymization).

We now consider the front-end requirements to work with our nullification
back-end:

1. The voter’s eligibility to vote is determined by knowing a secret key,
2. The voter can see how they voted from the BB, and
3. The voter can add a secret “flag” to their own cast ballot(s) that can be used

as a filter after the ballots are anonymized.

The first requirement is already true of must coercion resistance schemes,
including those based on fake credentials [24], panic passwords [12], and re-
voting [26]. The second requirement sounds like a strange requirement because,
until now, the literature assumes voters are posting their own ballots or in the
case of coercion, the voter at least knows coercion is happening. But in our
threat model of leaked keys (Row 3 of Table 2), an adversary might vote with a
voter’s key and the voter is not unaware and, in fact, has no way to tell from
the BB because the ballot components are all encrypted under the EA’s public
key. This is also true of hybrid systems (Internet voting with in-person fallback)
where a voter might be able to distinguish their actions from the adversary by
attending in-person with government photo identification (or similar).

The fix for JCJ and Selections is to require a voter to encrypt every ballot
twice: once under the EA’s key and once under the voter’s key. The voter must
then add a proof (using a Σ−Protocol) that: (i) the two encryptions are of the
same value (standard plaintext equality) and (ii) the public key used in the
second encryption matches the asserted voter credential in the ballot (possible
using Mauer’s abstraction [27]). In JCJ, voters looking for other ballots cast with
their keys will use trial decryption on every ballot to see if any belong to them.
In Selections, the ballot includes the password (real or panic) in a deterministic
commitment (rather than a randomized encryption) so it is simpler: the voter
checks if a commitment to their real password ever shows up in a submitted
ballot they did not actually submit. If they find one, they can decrypt the ballot
and take an action: leave it if it is for their candidate, re-vote if there is time
left, and nullify as a last resort if voting has already closed.

The third requirement is that a flag is added by the voter. The voter will
construct a “selector” vector of encrypted values, with one value for every ballot
submitted during the voting phase. For example, if there are 5 ballots and the
voter wants to flag the 3rd ballot, the vector could be: . 0 , 0 , 1 , 0 , 0 .
In this example, the unflagged value is 0 and the flagged value is 1. If a voter
flags a ballot with (. 1), it must know the private key used in the construction
of the ballot; otherwise, any voter could nullify any vote. However, when the
voter submits a false flag (. 0), it does not need to know the associated key. To
enforce these constraints, the voter must construct a ZK proof to prove that:
[for each flag, (it is an encryption of 0) or (it is an encryption of 1 and I know
.sk corresponding to the .pk used in a component of the ballot)].

46 D. Chaum et al.

In Case 1, the voter proves .(flag = 0). For exponential ElGamal, assume
. c1, c2 = Enc(m) = gr, gmyr for generator . g, public key .y = gŝk, and mes-
sage . m. A proof it encrypts .m̂ is equivalent to proving . g, c1, y, c2m̂

−1 is a
DDH tuple, which can be done with the Chaum-Pedersen Σ−Protocol. Call this
subproof A. In Σ−Protocol format, its transcript is . aA, eA, zA .

In Case 2, the voter proves a conjunctive statement: .(flag = 1) and it
knows . sk, which corresponds to .pk for the associated voter’s public key. Call the
subproof that .(flag = 1) B. It is implemented the same as in subproof A, with
transcript . aB , eB , zB . Call the proof of knowledge of .sk subproof C, which can
be implemented with a Σ−Protocol due to Schnorr: . aC , eC , zC . To summarize,
the hedgehog proves: .Π := [A OR (B AND C)] for each flag.

Further, the resulting proof can be made non-interactive (typically in the ran-
dom oracle model with the Fiat-Shamir heuristic [17], in its strong form [4], but
other heuristics exist [20]). Specifically, the prover generates a single challenge
. ê for . Π. To handle the conjunction within Case 2, .eB = eC ; for the disjunc-
tion across the cases, .ê = eA + eB . In Case 1, the prover computes . aA, eA, zA
and simulates . aB , eB , zB and . aC , eB , zC . In Case 2, the prover simulates
. aA, eA, zA and computes . aB , eB , zB and . aC , eB , zC .

The final consideration is where in the tallying process are the flags used?
This will be specific to the voting system. For JCJ and Selections, a suitable
design is to add flags to ballots before tallying. As nullification vectors arrive,
the EA can flatten them into a single vector that is the logical AND of all
vectors, using a binary lookup and the Mix and Match protocol [23]. Probably
the simplest way to nullify a ballot that has been flagged is to just replace the
key used to cast the ballot with a “junk” key value such as 0, again using a
lookup table (outputs are always rerandomized).

. gŝk ←
Flag Out
0 gŝk

1 0
(1)

However a special purpose trick can be used as a shortcut when the discrete
logarithm is hard and the encryption is additively homomorphic (both are true
in JCJ and Selections): a beacon selects a random exponent .rand after voting
closes, nullification uses . 0 as a non-flag and . rand as the flag, and then simply:
. gŝk ← flag · gŝk = flag+ gŝk . When the flag is . 0 , . gŝk is unmodified and
when it is . rand , . gŝk is “ruined” by casting it to an arbitrary integer (that is
unpredictable at the time . gŝk is submitted to the BB) and the secret key can
no longer be extracted (due to the discrete logarithm problem). Since the same
ballot can be nullified an arbitrary number of times, we assume some system-
level restrictions limit an adversary that nullifies so much, the value returns to
its original . gŝk (an integer overflow attack). These methods effectively turn any
real credentials into fake credentials (or real passwords into panic passwords).
Since the voting system will already eliminate (in a privacy-preserving fashion)
fake credentials, the tally can be computed as normal after this pre-processing
step.

Revisiting Silent Coercion 47

The general approach (using lookups) is expensive: each nullification request
requires work linear in the number of ballots, making it quadratic overall. How-
ever all the lookup tables can be pre-computed concurrently with the nullification
phase of the election, and the flattening (logical AND) can be done immediately
by the EA once it receives a new nullification request. Assuming the EA can keep
up nullification requests, only an additional linear amount of work is needed to
be done at tallying time. The special purpose trick is fast for the EA: it requires
only multiplications and no exponentiations.

Additional Remarks. Nullifications are not individually revealed on the BB, but
the difference between the provisional and final tallies provides coercion evi-
dence analogous to that in Caveat Coercitor. A coercer might attempt to verify
whether a coerced vote was nullified by casting a vote using the voter’s creden-
tial and later checking whether a nullification occurred. Our protocol, however,
does not reveal nullification events on a per-ballot or per-credential basis. Bal-
lot nullifications are included only in the transition from the provisional to the
final tally, and the nullification request itself is either hidden (via cryptographic
flagging) or aggregated. In particular, a coercer who holds the voter’s credential
cannot determine whether a nullification occurred.

The JCJ definition of coercion resistance includes the ability to avoid forced
abstention attacks [24]. In the passive nullification of Caveat Coercitor [18] and
the active nullification of our work, a voter can cryptographically prove that the
ballot associated with a specific credential was nullified. To evade forced absten-
tion, nullification needs to be composed with a coercion resistance mechanism
(see Fig. 1). For example, with fake credentials, the voter can prove credentials
are nullified but cannot prove the credential is real. A promising direction for
future work is to develop deniable nullification mechanisms where no individual
voter can prove that they nullified a ballot.

3.2 Hedgehogs

We will present one final idea: can we allow voters to enlist helpers to help them
with nullification? This is useful for voters who are not savvy about coercion,
which likely overlap with voters likely to leak their keys unintentionally. The
idea is to let a voter prearrange with a helper: “I want to vote for Alice and this
is the key I will use; if you see a vote for Bob on the BB with my key, please
nullify it.”

This works if the helper is fully trusted. Precisely we are making two trust
assumptions: (i) The helper will nullify if there is a vote for Alice, and (ii) the
helper will not nullify if there is a vote for Alice (which it has the power to do).
The first assumption can be addressed by enlisting many helpers, hoping that
at least one will act. The second assumption is difficult to fix. However we will
now propose a new front-end voting system that does not require the second
trust assumption. In other words, helpers are semi-trusted : they are trusted to

48 D. Chaum et al.

Table 3. The threat model for different actors in an election with a blue and red
candidate. The voter prefers the blue candidate and the adversary the red candidate.
The symmetry between the adversary with the leaked credentials and the voter shows
why the voter cannot register their true intent reliably. The asymmetry between the
voter and the hedgehog is the contribution of the VoteXX front-end.

Action Blue Voter Red Adversary (no
credentials)

Red Adversary (with
both credentials)

Blue Hedgehog (blue
credential only)

View bulletin board Yes Yes Yes Yes
Cast a blue vote Yes No Yes, but would not Yes
Cast a red vote Yes, but would not No Yes No
Nullify voter’s blue vote Yes No Yes No
Nullify adversary’s red vote Yes No Yes Yes

Voting.
Each voter completes voting online. We assume voters have already registered two
keys or passphrases: one used to vote YES and one for NO. At completion, each
voter will have submitted their ballot using a passphrase from registration.

1. The value nonce is a parameter of the election.
2. To mark a ballot for YES, the voter uses their YES passphrase to generate

skyes and uses this key to sign n0: σyes ← Sig(nonce). Corresponding values are
used to vote NO.

3. The voter uses the EA’s threshold encryption scheme to compute ballot ←
pkyes , σyes , πppk , where each group element of σ is individually encrypted

and πppk is a proof of plaintext knowledge using the Chaum-Pedersen
Σ−Protocol.

4. The voter submits ballot over an anonymous channel to the BB. The EA marks
it as invalid if it is an exact duplicate or if the proofs are invalid.

Protocol 1: Voting Protocol.

actually act when they are supposed to, but they cannot act against the voter’s
wishes. We call semi-trusted helpers hedgehogs.

Hedgehogs are introduced not because they possess capabilities that voters
lack in principle, but because they are more reliable agents for acting on those
capabilities in practice. While it is true that a technically aware voter could
inspect the BB and identify unauthorized ballots submitted using their creden-
tial, most voters are unlikely to do so—especially if they are unaware that their
key has been compromised. Hedgehogs serve as dedicated monitors who scan
the BB for suspicious ballots and can proactively initiate nullification before the
voter ever notices. Hedgehogs might be benign election watchdogs or partisan
parties who are selected by voters who share the same political allegiance. For

Revisiting Silent Coercion 49

Provisional Tally.
After the voting period ends, the EA produces a verifiable provisional tally.

1. The EA takes the list of pk , σ , verifiably shuffles them, then threshold-decrypts
them: pk, σ .

2. For each ballot, the ballot is marked invalid if σ does not verify under its correspond-
ing pk.

3. For each valid signature, pk is matched to its entry on the Roster. The EA determines
if it is a YES or NO key, and counts the vote only if it is the only ballot cast that
corresponds to that roster entry.

Nullification.
The goal of nullification is to allow voters to modify their cast ballots, particularly in the
case of coercion. Unlike other protocols, voters can enlist the help of others parties, called
hedgehogs. The nullification period runs after the provisional tallying. If the provisional
tally contains pkno, it can be nullified using skyes (the “opposite” key). In other words,
casting a YES and nullifying a NO vote use the same key, as these two actions are aligned
in their intention.

1. At any convenient time, before or after voting, the voter covertly communicates
with a hedgehog to develop a coercion-resistant strategy. For example, assume the
following strategy: the voter wants to vote YES and reveals skyes to the hedgehog,
along with pkyes, pkno . They request the hedgehog engage in nullification if pkno is
in the provisional tally.

2. Using the Roster and set of valid signatures from the provisional tally, the EA refor-
mats the election data into two lists. The first list establishes, in arbitrary order,
the set of pkno keys from voters who cast valid votes for YES (call it yesVotes). The
second list contains pkyes from voters who voted NO.

3. For example, assume YES received six votes in the provisional tally. yesVotes consists
of six pkno keys. If the hedgehog wants to nullify the fourth key, it prepares a list of
encrypted “flags” marking the ballot it wants to nullify: 0 , 0 , 0 , 1 , 0 , 0 .

4. The first encrypted flag corresponds to the first pkno in yesVotes. The hedgehog adds
a proof to this list using the nullification ZK protocol. Concisely, the proof statement
is: [for each flag, (it is an encryption of 0) or (it is an encryption of 1 and I know
skno corresponding to this pkno)].

Final Tally.
After the nullification period ends, the EA produces a verifiable final tally.

1. The EA takes all the encrypted flags for the first pkno key in yesVotes and computes
its logical AND under encryption using the mix and match secure function evaluation
(SFE) protocol [23]. It repeats this process for the remaining pkno keys.

2. The EA takes the list of encrypted OR-ed flags, sums them under encryption, and
verifiably threshold-decrypts the result. The EA subtracts this value from the number
of YES votes in the provisional tally to produce the final tally for YES votes.

3. The EA repeats Steps 1–2 for each pkyes key in noVotes.

Protocol 2: Tallying Protocol (including nullification).

50 D. Chaum et al.

example, each political party or candidate could offer a hedgehog to their voters
(Table 3).

Our approach is to redesign a front-end voting system (we call VoteXX)
that uses multiple keys to identify voters, instead of just one (as in JCJ and
Selections), where the keys are tied to specific candidates in the election. We will
use the example of two keys: .pkyes to vote yes and .pkno to vote no. The front-end
is based on signature-based mix network voting, cf. [6, 19, 30]. The nullification
period runs after a provisional tallying phase. If the provisional tally contains
.pkno, it can be nullified using .skyes (the “opposite” key). In other words, casting a
YES and nullifying a NO vote use the same key, as these two actions are aligned
in their intention. Thus voters who want to vote yes will provide the hedgehog
with only .skyes and will not provide .skno.

VoteXX with nullification is given in Protocols 1 and 2. VoteXX is not nec-
essarily better or worst than augmenting JCJ or Selections with nullification, it
just shows the flexibility of nullification and illustrates different trade-offs that
are possible:

– Hedgehogs: In VoteXX, helpers are only semi-trusted while in
JCJ/Selections they are fully trusted.

– Normal coercion-resistance: In VoteXX, there is no support for normal
coercion resistance (when the adversary does not know the key), while JCJ
offers fake credentials and Selections offers both panic passwords and re-
voting.

– Multiple candidates: In VoteXX, each additional candidate in the election
requires an additional inalienable passphrase to be memorized by the voter.
In JCJ/Selections, the requirements on the voter does not change with the
number of candidates.

– Provisional Tally: In VoteXX, a provisional tally is published and then
adjusted based on nullification, which reveals early information about the
tally. In JCJ/Selections, nullification is done prior to tabulating the tally.

– Efficiency: In VoteXX and Selections, tallying is linear without nullification
while JCJ is quadratic without nullification.

4 Variants and Extensions

Vote Flipping. Our design supports a variety of options for implementing the
semantics of nullification, including what we call “cancel” or “flip.” We recom-
mend cancel, which is the default and is what has been described thus far.
Consider a vote that might have been nullified by one or more entities. We will
describe the case for when there are two ballot choices. Assume that this vote
selects from one of two ballot choices numbered .0, 1. With cancel, the vote is
cancelled if and only if at least one entity nullified it (and this idea can be gen-
eralized to at least . t entities for some threshold . t). With flip, the vote becomes
.x+y mod 2, where . x is the ballot choice of the vote, and . y is the number of times

Revisiting Silent Coercion 51

the vote was nullified. Intuitively, cancel gives the voter the ability to cancel the
vote, whereas flip gives the voter the ability to randomize the vote.

Each of these options can be implemented using different algebraic operations
during Step 1 of the third phase (Final Tally) of Protocol 2: AND for cancel
(realized with a homomorphic addition of the encrypted flags for each ballot
followed by a plaintext equality test with . 0), and ADDITION modulo . 2 for
flip (realized with mix and match. Step 2 replaces the final summation with
a verifiable shuffle and threshold decryption of the flag set for each key). We
view flip not as re-voting, but as “randomizing” the vote, which is a form of
nullification.

As we point out below, under stronger assumptions, there are some use cases
in which flip can be used to re-vote. Also, nullification can be used as an overlay
in conjunction with re-voting strategies. A useful application of flip arises for a
common form of low-intensity coercion. Suppose during remote voting at home,
a coercer tells their spouse to vote for Alice and watches them comply, but the
coercer does not collect the spouse’s keys. The spouse can later flip their vote
to Bob without the coercer knowing.

Coercion Evidence. Our system also supports a form of coercion evidence, though
in a different style from Caveat Coercitor [18]. Rather than embedding an explicit
coercion-evidence test in the tallying process, we allow coercion evidence to
be derived by computing the difference between the provisional tally (before
nullification) and the final tally (after nullifications are processed). This dif-
ference quantifies the effect of adversarial interference, credential leakage, or
voter-initiated ballot cancellations, and can be used by observers to assess the
integrity of the election outcome.

Inalienable Authentication. A related but orthogonal direction to nullification is
inalienable authentication (recall Fig. 1): ensuring that only the voter—rather
than their device—possesses the factor needed to cast a valid vote. The idea
traces back to Achenbach et al. [1] and is further discussed in ecash 2.0 [10],
where a credential is bound not to a device but to a secret memorized by the
user. This offers a path to prevent adversaries from voting even when they control
the voter’s device or possess all stored credentials. However, while prior work
assumes such a mechanism exists, no concrete implementation has been adopted
in remote voting systems. We view this direction as promising but currently
underdeveloped, particularly in terms of usability and resistance to coercion.

There remain substantial challenges in designing usable inalienable authenti-
cation. A voter must prove knowledge of a secret without revealing it, and with-
out offloading trust to a potentially compromised device. This raises questions
about entropy, memorability, leakage, and fallback. As a conceptual example, a
voter could demonstrate knowledge of a passphrase by computing a blinded lin-
ear function over a challenge (e.g., .c ·x+r), using a physical aid such as a printed
wheel. Though primitive, this illustrates that inalienable authentication has not
been fully explored as a human-verifiable building block for remote voting. We
leave the development of practical, zero-knowledge, and simulatable versions of
this primitive to future work.

52 D. Chaum et al.

Voting in Person or by Mail. To support the existing voting infrastructure,
VoteXX can allow for a setting where the voting is accomplished by mail or
in precincts using paper ballots. This capability can be achieved by incorporat-
ing a code-voting protocol, such as that used in Remotegrity [34].
Malware Protection. Malicious software and can alter the operations performed
by the voter. VoteXX allows for a two-phase voting process. In Phase 1, the
user submits a vote or a vote commitment. In Phase 2, using a different device,
the voter checks if the submission is correctly posted on the BB. Optionally,
this extension can include an additional set of keys, where the user submits a
payload signed with the additional keys and thereby “ locks in” their submission.

5 Conclusion

Nullification offers a response to credential compromise in voting systems that
are otherwise coercion resistant. While our protocol puts forward a concrete pro-
posal, the broader design space remains far from settled—especially around the
practicalities of hedgehogs; the composability of nullification with existing mech-
anisms like panic passwords, re-voting, and fake credentials; and designs enable
a response to silent coercion without imposing unrealistic memory, attention, or
procedural demands.

References

1. Achenbach, D., Kempka, C., Löwe, B., Müller-Quade, J.: Improved coercion-
resistant electronic elections through deniable re-voting. USENIX JETS (2015)

2. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
pp. 335–348 (2008)

3. Adida, B., Marneffe, O.d., Pereira, O., Quisquater, J.J.: Electing a university presi-
dent using open-audit voting: analysis of real-world use of Helios. In: EVT/WOTE
(2009)

4. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of the
Fiat-Shamir heuristic and applications to Helios. In: ASIACRYPT (2012)

5. Carback, R.T., et al.: Scantegrity II municipal election at Takoma Park: the first
E2E binding governmental election with ballot privacy. In: USENIX Security Sym-
posium (2010)

6. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–90 (1981)

7. Chaum, D.: Random-Sample Voting (2012). online
8. Chaum, D., et al.: Votexx: a solution to improper influence in voter-verifiable

elections. In: E-Vote-ID (2022)
9. Chaum, D., et al.: Votexx: extreme coercion resistance. IARC ePrint 2024/1354

(2024)
10. Chaum, D., Moser, T.: ecash 2.0 inalienably private and quantum-resistant to

counterfeiting. Tech. rep. (2022)
11. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO (1992)
12. Clark, J., Hengartner, U.: Selections: internet voting with over-the-shoulder

coercion-resistance. In: Financial Cryptography (2011)

Revisiting Silent Coercion 53

13. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system.
In: IEEE Symposium on Security and Privacy, pp. 354–368 (2008)

14. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: EUROCRYPT (1997)

15. Essex, A., Clark, J., Hengartner, U.: Cobra: Toward concurrent ballot authorization
for Internet voting. In: EVT/WOTE (2012)

16. Eyal, I.: On cryptocurrency wallet design. In: Tokenomics (2021)
17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification

and signature problems. In: CRYPTO, pp. 186–194 (1986)
18. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.A.: Caveat coercitor: coercion-

evidence in electronic voting. In: IEEE Symposium on Security and Privacy (2013)
19. Haenni, R., Spycher, O.: Secure Internet voting on limited devices with anonymized

DSA public keys. In: EVT/WOTE (2011)
20. Hazay, C., Lindell, Y.: Search problems. In: Efficient Secure Two-Party Protocols.

ISC, pp. 227–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14303-8_9

21. Hirt, M.: Multi-Party Computation: Efficient Protocols, General Adversaries and
Voting. Ph.D. thesis, ETH Zurich (2001)

22. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: EUROCRYPT (2000)

23. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher-
texts. In: ASIACRYPT (2000)

24. Juels, A., Catalano, D., Jacobsson, M.: Coercion-Resistant electronic elections. In:
ACM WPES (2005)

25. Kulyk, O., Teague, V., Volkamer, M.: Extending helios towards private eligibility
verifiability. In: E-Voting and Identity (2015)

26. Lueks, W., Querejeta-Azurmendi, I., Troncoso, C.: Voteagain: A scalable coercion-
resistant voting system. In: USENIX Security (2020)

27. Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: AFRICACRYPT
(2009)

28. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS
(2001)

29. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: CRYPTO (1992)

30. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In: EUROCRYPT (1993)

31. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: EURO-
CRYPT (1991)

32. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

33. Wen, R., Buckland, R.: Masked ballot voting for receipt-free online elections. In:
VOTE-ID (2009)

34. Zagórski, F., Carback III, R.T., Chaum, D., Clark, J., Essex, A., Vora, P.L.:
Remotegrity: design and use of an end-to-end verifiable remote voting system.
In: ACNS (2013)

https://doi.org/10.1007/978-3-642-14303-8_9
https://doi.org/10.1007/978-3-642-14303-8_9
https://doi.org/10.1007/978-3-642-14303-8_9
https://doi.org/10.1007/978-3-642-14303-8_9
https://doi.org/10.1007/978-3-642-14303-8_9
https://doi.org/10.1007/978-3-642-14303-8_9
https://doi.org/10.1007/978-3-642-14303-8_9
https://doi.org/10.1007/978-3-642-14303-8_9
https://doi.org/10.1007/978-3-642-14303-8_9
https://doi.org/10.1007/978-3-642-14303-8_9
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725

54 D. Chaum et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Revisiting Silent Coercion
	1 Our Contributions in Context
	1.1 Ballot Privacy is not Always Enough
	1.2 Coercion Resistance Mechanisms
	1.3 Relationship to Authentication
	1.4 Silent Coercion
	1.5 Other Examples of Nullification
	1.6 Our Contributions

	2 Preliminaries
	3 New Nullification Protocol
	3.1 Front-End Requirements
	3.2 Hedgehogs

	4 Variants and Extensions
	5 Conclusion
	References

