
Absentia: Secure Multiparty
Computation on Ethereum

Didem Demirag(B) and Jeremy Clark

Concordia University, Montréal, Canada
d demira@encs.concordia.ca

Abstract. This paper describes a blockchain-based approach for secure
function evaluation (SFE) in the setting where multiple participants have
private inputs (multiparty computation) that no other individual should
learn. The emphasis of Absentia is reducing the participants’ work to
a bare minimum, where they can effectively have the computation per-
formed in their absence and they can trust the result. While we use an
SFE protocol (Mix and Match) that can operate perfectly well without
a blockchain, the blockchain does add value in at least three impor-
tant ways: (1) the SFE protocol requires a secure bulletin board and
blockchains are the most widely deployed data structure with bulletin
board properties (immutability and non-equivocation under reasonable
assumptions); (2) blockchains provide a built-in mechanism to financially
compensate participants for the work they perform; and (3) a publicly
verifiable SFE protocol can be checked by the blockchain network itself,
absolving the users of having to verify that the function was executed
correctly. We benchmark Absentia on Ethereum. While it is too costly to
be practical (a single gate costs thousands of dollars), it sets a research
agenda for future improvements. We also alleviate the cost by compos-
ing it with Arbitrum, a layer 2 ‘roll-up’ for Ethereum which reduces the
costs by 94%.

1 Introduction

Consider the traditional setting for multiparty computation (MPC) with a twist:
Alice and Bob each have some data, they would like to know the output from
running an agreed-upon function on their data, each does not want the other
(or anyone else) to learn their data, and they want to simply submit their data
(e.g., encrypted) to a trustworthy system and come back later for the result,
which will always be correct. They are willing to pay for this service and they
accept that, only in the worst case of full collusion between the operators of
this service (called trustees), their inputs may be exposed—but a single honest
trustee protects their privacy.

We assume the reader is familiar with blockchain technology, Ethereum, and
smart contracts or decentralized apps (DApps). Can these technologies help? In
theory? In practice? We seek to answer these questions through direct exper-
imentation. The abstract above builds the argument for why blockchain can
c© International Financial Cryptography Association 2021
M. Bernhard et al. (Eds.): FC 2021 Workshops, LNCS 12676, pp. 381–396, 2021.
https://doi.org/10.1007/978-3-662-63958-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63958-0_31&domain=pdf
https://doi.org/10.1007/978-3-662-63958-0_31

382 D. Demirag and J. Clark

help: (1) it provides an integral point of coordination where trustees can post
and track progress on the evaluation; (2) it provides an in-band solution for pay-
ing the trustees (in either a cryptocurrency like ETH or in a stablecoin pegged
to the value of governmental currency like the USD) in a way that is contingent
on their performance; and (3) the blockchain itself can serve as the public veri-
fier and can reject any protocol proof that is not correct. When Alice and Bob
retrieve the result (whether in plaintext or individually encrypted under their
keys), they know it must be correct—otherwise it would not be there waiting
for them.

Our experiments show that while in theory the idea is sound and we are
able to successfully perform a secure function evaluation of a single logic gate
(NAND gate) on Ethereum, the costs today are too prohibitive for it to be
considered practical. We then turn to so-called layer-2 solutions and show that
Arbitrum [14] can make Absentia substantially more practical (with room for
further improvement).

1.1 Key Design Decisions

Note that we use the more precise term secure function evaluation (SFE) to
describe the stateless, one-shot evaluation that Absentia provides. We think
of SFE as a subset of secure multiparty computation (MPC)—a more general
setting which includes stateful computations performed over time.

Design Decision: Trustee Model. In keeping with our priority for a submit-and-
go protocol, someone has to perform the actual evaluation of the function on the
inputs. We call these entities trustees. We require that the number of trustees (n)
can be chosen independently of the number of inputs. In Absentia, we assume
all trustees (n-out-of-n) participate (and can identify any that do not). However
Absentia could be modified to allow the protocol to proceed if only a threshold
(t out of n) of trustees participate—however, also reduces the number of trustees
that need to collude to break the privacy of the protocol.

The remaining question is how can Alice and Bob find trustees they assume
will not collude? We have several suggestions: (1) it could be based on per-
sonal connections; (2) perhaps commercial entities would emerge with either
pre-established reputations or earn their reputation over time (similar to oracle
providers today); confidence might increase if they offer legally enforceable terms
of service; or (3) trustees could be picked at random from a large set of trustees.
While (3) may not sound convincing, it is essentially same threat model as the
anonymous web-browsing tool Tor which is trusted by many vulnerable users
(perhaps Tor also uses flavours of (1) via its Entry Guard program).

Design Decision: Ethereum. While we are not the first to explore multi-party
computation and its relationship to blockchain (see Sect. 2.1), we believe we
are the first to implement an SFE/MPC protocol on a public, commonly used
blockchain; namely, Ethereum. The first research question we ask is whether
SFE/MPC is even feasible on Ethereum, given the heavy cryptography it uses.

Absentia: Secure Multiparty Computation on Ethereum 383

Our paper establishes a benchmark that we hope to see improved through future
research. Ethereum itself has scheduled scalability plans including Ethereum 2.0
(more transactions per second), and a lot of community resources are also being
spent examining and implementing layer 2 solutions that move blockchain func-
tionality off of the main chain without sacrificing many of its security benefits.
Technologies include state channels, sidechains, and roll-ups [12]. To experiment
with these technologies, we also deploy and benchmark critical components of
Absentia on Arbitrum [14], a recently proposed system for optimistic roll-ups
(described more in Sect. 4). We now turn to another avenue for improvement,
using state-of-the-art MPC protocols.

Design Decision: Mix and Match. Starting with Yao in 1982 [21], the question
of how to securely evaluate a general function, when inputs are held by multiple
people, has generated a rich body of literature in cryptography. In choosing
an SFE/MPC protocol for the basis of Absentia, we looked for one with the
following properties:

1. Trustee model. As justified above, we seek an SFE/MPC protocol that
lets the input holders (e.g., Alice and Bob) offload their inputs to a set of
non-colluding trustees for evaluation.

2. Publicly verifiable (a.k.a. publicly auditable or universally verifiable).
Many MPC/SFE protocols are in the semi-honest (i.e., honest-but-curious)
model. Some are resilient to covert or malicious adversaries. We require that
not only can adversarial behaviour be detected by the participates in the
protocol, but that it can be detected by anyone (i.e., the public). This allows
(a) Alice and Bob to offload the computational work to the trustees and still
ensure the output is correct, even if they did not directly participate, and (b)
Alice and Bob can go further and offload the verification itself to someone
they trust—the Ethereum network in this case.

3. Identifiable aborts. If the protocol does not reach completion, anyone can
establish which trustee aborted. Financial incentives can be attached to par-
ticipation and timeliness.

4. Elliptic curve operations. While Ethereum can in theory implement dif-
ferent types of cryptography (RSA groups, integer-based discrete logarithms
groups, lattices, etc..), it has native support for its own cryptographic opera-
tions (ECDSA signatures) on the elliptic curve secp256k1. For ease of imple-
mentation, we prefer a SFE/MPC with the same cryptographic setting.

5. Circuit type. When the function to be evaluated is represented as a circuit,
the circuit could be based on logic gates (i.e., NAND gates) or arithmetic
operations (e.g., additions and multiplications in a modular group). We are
indifferent to this design parameter.

One SFE protocol to meet our purposes is Mix and Match [13] and we chose
it based on our familiarity with it. We are also aware that the state-of-the-art
MPC protocols are based on a different paradigm—based on Beaver triples [4]—
initiated by the SPDZ protocol [9,10] with many followups (HighGear is a recent

384 D. Demirag and J. Clark

example [15]). While SPDZ uses lattice-based somewhat homomorphic encryp-
tion (SME), this is during a pre-computation phase and Absentia (for now)
assumes all pre-computation has been validated. SPDZ also appears amenable to
a trustee model and one paper explores a publicly verifiable variant [3], however
since the authors do not compare themselves to Mix and Match, it would be a
full research project to determine if it is indeed faster. We note that it is not obvi-
ously categorically faster—for example, by not requiring public key operations
at all: the publicly verifiable variant uses Pedersen commitments extensively.

We are not aware of an explicit proof that Mix and Match is publicly veri-
fiable, however every step of the protocol is covered by a trustee issuing a non-
interactive zero knowledge proof and it is later assumed to be by the authors in
their auction application [13]. Stated a different way, it appears that even when
all trustees fully collude, trustees can only break privacy (and not integrity)
with the exception of one sub-protocol, as noted by the authors [13], called the
plaintext equality test (PET). Despite the caveat, many have used the PET pro-
tocol as if it is publicly verifiable (some making justifications based on statistical
arguments). Recently it was shown these statistical arguments are not sufficient,
but the PET protocol can be made verifiable, even when all trustees collude,
with a simple additional check on the final output [17].

2 Preliminaries

2.1 Related Work

The blockchain literature has explored SFE and MPC in several regards. Perhaps
the closest to Absentia is Enigma [22] which offers stateful MPC as a service.
The original academic proposal utilizes a custom blockchain. Now as a commer-
cial project, the emphasis is on providing generic smart contracts with privacy.
Enigma runs on a Cosmos/Tendermint-based chain, with an Ethereum bridge
contract that allows swapping crypto-assets. Absentia is different in the follow-
ing regards: (1) users provide the circuit they want evaluated, (2) Absentia does
not use trusted execution environments (TEE), and (3) we benchmark running
natively on Ethereum. Like Enigma, Hawk also provides a privacy wrapper for
contracts [16] based on succinct zero knowledge. A fair MPC is described as an
application of Hawk but not implemented.

The literature has also explored moving computation off-chain while not los-
ing privacy or correctness, however from the perspective of a single entity’s secret
data (i.e., verifiable computing as opposed to SFE/MPC). Examples include
Zexe [6], ZkVM [1], and Raziel [19]. Another research direction, initiated by
Andrychowicz et al. [2], explores how blockchain technologies can support an
off-chain MPC to provide fairness. By contrast, Absentia is performing the SFE
on the blockchain. Closely related to SFE/MPC are zero knowledge proofs, whose
uses in blockchain are now too prolific to adequately summarize here.

Absentia: Secure Multiparty Computation on Ethereum 385

2.2 Background

We provide a basic overview of the Mix and Match protocol for secure function
evaluation (SFE), while referring the reader to the original paper by Jakobsson
and Juels for the full details [13]. Mix and Match uses a partially homomor-
phic encryption scheme; we instantiate it with additive exponential Elgamal [8].
We implement it over the elliptic curve secp256k1 which is used natively by
Ethereum (we describe later how this results in savings).

Mix and Match: Pre-computation. In a pre-computation stage, the following
tasks are completed. First, a set of n trustees, identified by public keys, are cho-
sen. A threshold of trustees needed to complete the protocol can also be chosen,
however we implement the simplest case: 2-out-of-2 (we call this distributed as
opposed to threshold). Next, the trustees use a distributed key generation (DKG)
protocol for creating n shares of the decryption key, one for each trustee, as well
as a single joint public key. Exponential Elgamal supports DKG and threshold
decryption [18].

In Mix and Match, a circuit of the function to be evaluated is produced using
multi-input and multi-output lookup tables. We evaluate a single binary NAND
gate (a universal gate that can create any circuit) which corresponds to a lookup
table with two binary inputs (one from Alice and one from Bob) and a single
binary output. During a pre-computation stage, the circuit for the function is
established as a sequence of lookup tables (the output from one table can be
used as an input to another). Each element of each lookup table is individually
encrypted under the trustees’ public key (we denote an encryption of x as �x�):

A B Out

�0� �0� �1�

�1� �0� �1�

�0� �1� �1�

�1� �1� �0�

The encrypted table is then permuted row-wise. Each trustee mixes the rows,
rerandomizes each ciphertext, and proves in zero knowledge that the result is
correct:

A B Out

�0� �1� �1�

�1� �0� �1�

�1� �1� �0�

�0� �0� �1�

Complete circuits of such tables can be pre-computed by the trustees before
Alice and Bob provide their inputs. Practically speaking, if sets of trustees were
pre-established, they could prepare circuits for commonly requested functions

386 D. Demirag and J. Clark

and post them publicly. When Alice and Bob decide to do an SFE, they can
choose the pre-computed circuit (produced by a specific set of trustees). For the
purposes of this paper, we assume circuits have been pre-computed and verified.
In the future we may extend Absentia to accept a circuit and complete set of
proofs to verify its correct construction, but for this paper, we concentrate on
building a verifier for the online phase.

Plaintext Equality Test (PET). Let 〈�x�, �y�〉 denote two exponential Elgamal
ciphertexts; encryptions of x and y respectively. The trustees will first compute
�z� = �x − y� using the additively homomorphic property. If the values are the
same, z = 0; otherwise z �= 0. Each trustee will choose a random ri �= 0, compute
�ẑi� = �ri ∗ ẑi−1� (where ẑ0 := z) and prove correctness in zero knowledge.
The resultant �ẑ� = �

∏
ri ∗ z� will still be �0� when x = y and will encrypt a

randomly distributed non-zero integer otherwise. (The original proposal [13] lets
each trustee blind without using the result from the previous trustee—this adds
asynchronicity but requires a critical security correction [17]). In the final step,
the trustees decrypt and reveal ẑ. If ẑ = 0, the equality test returns True; and
returns False otherwise.

Mix and Match: Online Phase. At this stage, Alice and Bob provide their inputs
〈�a�, �b�〉. The trustees can begin with Alice’s input �a� and they compute a PET
between �a� and each ciphertext in the column corresponding to Alice’s input.
They do the same for Bob. They locate the row that returns true for every input
column. The encrypted output(s) of this row can then be (1) transferred as an
input to the next gate, (2) decrypted publicly if it is a final output, or (3) proxy
re-encrypted for Alice (and/or Bob)—meaning it is obliviously and verifiably
changed by the trustees from an encryption under the trustees’ joint public key
to an encryption under Alice’s. For simplicity in Absentia, we implement (2).
We illustrate for the previous example and a = 1 and b = 0:

A B Out

PET(�a�, �0�) = F PET(�b�, �1�) = F

PET(�a�, �1�) = T PET(�b�, �0�) = T �1� is selected

PET(�a�, �1�) = T PET(�b�, �1�) = F

PET(�a�, �0�) = F PET(�b�, �0�) = T

3 Absentia: System Design

High Level Flow. Figure 1 illustrates a high level overview of how participants
interact with Absentia. The main contract of the system is the Absentia-DApp
(mixmatch.sol), which can create sub-contracts: PET Sub-DApp (PET.sol).
Note that Fig. 1 is stylized and the exact implementation might split/join certain
function calls but it provides an accurate mental model of participation within
the system.

Absentia: Secure Multiparty Computation on Ethereum 387

Alice PET
Sub-DApp Trustee 1* Trustee 2Bob Absentia

DApp

Alice PET
Sub-DApp Trustee 1* Trustee 2Bob Absentia

DApp

Loop

1

4

16

2

3

5

6

7

8

9

10

11

12

13

14

15

17

18

Deposit Ciphertext and Fee

Deposit Ciphertext and Fee

Load Circuit Ciphertexts

Create PET Contracts

Lock Fees

Create PET Contracts

PET: Subtraction

PET: Submit Blinded Value and ZKP

PET: Submit Blinded Value and ZKP

PET: Partial Decryption and ZKP

Equal or Not Equal

Determine Output

Output: Partial Decryption and ZKP

Output: Partial Decryption and ZKP

Transfer Fees to Trustees

Retrieve Result

Retrieve Result

PET: Partial Decryption and ZKP

[For Each PET]

Fig. 1. Overview of Absentia.

At the beginning of the protocol, the contracts are deployed, identifying Alice,
Bob, and the trustees (by Ethereum address). Alice and Bob both submit their
encrypted input, and deposit fees that will be paid to the trustees for completing
the protocol. We consider Absentia submit-and-go because Alice and Bob do not
have to perform any other functions during the execution of the protocol.

Certain tasks are public operations that can be performed by anyone. For
our analysis, we assume that Trustee 1 is the leader (denoted Trustee 1* with
an asterisk) and always does these tasks. It is substantially more work, so it
might improve the protocol to balance these operations between trustees or to
compensate the leader more than the other trustees.

The actual Mix and Match operations done by each trustee is done off-chain
using their share of the private key and other secrets (like randomizers) which
are always offline. Ethereum is used to record the output of each step, record
a zero-knowledge proof that the step was performed correctly, and to actually
validate this proof. The DApp will reject any outputs accompanied by invalid
or incomplete proofs. All proofs are Σ-protocols (specifically Schnorr [20] or
Chaum-Pedersen [7]) made non-interactive with (strong [5]) Fiat-Shamir [11].
As this is not our main contribution, we refer the reader to the original paper
by Jakobsson and Juels for the full details how these proofs are used in Mix and
Match [13].

For each gate, the Absentia DApp creates enough instances of the PETs
(e.g., 8 instances for a binary gate) to perform the evaluation. The trustees then

388 D. Demirag and J. Clark

interact with the PET contract, running each to completion (a state machine
governs each step of the protocol). Note that for simplicity, Absentia requires
the trustees to go in a specified order but the underlying protocol is amenable
to some concurrency. Once enough PETs are complete that the output is deter-
mined, the leader can assert this to the Absentia DApp which will check the
state of the PET contracts to confirm. The final output is staged for decryption
by the trustees. Alice and Bob can find it on the Absentia DApp. For simplic-
ity, the result is in plaintext however Absentia could be modified to support
proxy re-encryption instead of decryption which would leave two final cipher-
texts, encrypted respectively under public keys specified by Alice and Bob.

Payments. Absentia allows Alice and Bob to pay Trustee 1 and Trustee 2 upon
completion of the protocol. We implement a simple proof-of-concept payment
scheme while noting more elaborate schemes are possible. As implemented, Alice
and Bob can deposit and withdraw ETH. The protocol cannot begin until their
accounts hold enough to satisfy the fee (and if they hold more, the excess can
be withdrawn at any time). Once the protocol begins, the funds for the fee are
locked in escrow within the contract. If the protocol reaches finality, the funds
are transferred to the accounts of Trustee 1 and 2 who can then withdraw (Note
we use standard re-entrancy protection1 on withdraws.) If the protocol times out
without reaching finality, the fees are returned to Alice’s and Bob’s accounts.

An alternative incentive scheme might pay trustees gradually for each step
of the protocol they complete and then a larger bonus for completing. Since
Absentia can identify which trustee aborts the protocol (a useful feature that
is not always possible in SFE/MPC protocols), trustees could also be required
to post a payment (stake) to act as a fidelity bond. They financially commit to
completing the protocol in a timely fashion and their stake is taken (slashed) if
they do not.

Code Layout. Absentia is implemented in Solidity. All our code and tests are
open source.2 The trustees can perform their operations and generate their proofs
in a language of their choice; we implement this in Mathematica (which we also
use to generate test vectors for validating the Solidity code). Mixmatch.sol and
PET.sol consists of 214 and 388 lines (SLOC) of Solidity code respectively. We
adapt a standard library for elliptic curve operations.3

One optimization we implement concerns scalar multiplication over elliptic
curves. Since Solidity is verifying proofs in Absentia, it only has to verify mul-
tiplications rather than perform them. Put another way, the trustee supplying
the proof to Absentia already knows what the result of every multiplication is
and can provide these values. As it turns out, it is cheaper to verify a multipli-

1 Open Zeppelin’s ReentrancyGuard.sol.
2 https://github.com/MadibaGroup/2017-Absentia.
3 Orbs’ ECops.sol.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/MadibaGroup/2017-Absentia
https://github.com/orbs-network/elliptic-curve-solidity/blob/master/ECops.sol

Absentia: Secure Multiparty Computation on Ethereum 389

Table 1. Code size for mixmatch.sol

Code Size (bytes)

Bytecode 27,178

Deployed 26,774

Initialisation and constructor code 404

cation than compute one by ‘abusing’ Ethereum’s relatively inexpensive opcode
for validating ECDSA signatures.4

Since Absentia generates a lot of PETs to perform the protocol, we imple-
ment this aspect with a factory design pattern. In this pattern, each PET is
a stand-alone contract. The Mix and Match contract can create instances of
these PET contracts and deploy them at new addresses. Our measurements (see
below and Table 2) demonstrate that the factory pattern has certain drawbacks.
Mixmatch.sol must deploy with a full copy of PET.sol’s bytecode in order for it
to deploy instances of PET.sol. This results a contract size that is large. Also the
function (Create Row) that creates (two) PETs each time it is called is the most
expensive function in the system and costs 8, 741, 453 gas (gas is Ethereum’s
metric for the cost of a computation).

All contracts enforce the order in which the functions can execute through
state changes maintained within the contract. Key state changes emit events.

3.1 Measurements

Testing Platform. To test Absentia, we use Truffle on a local Ethereum
blockchain. Our test files are included on the code repository. We also dupli-
cated Absentia’s functionality in Mathematica to help establish correctness.

Code size. The code size for mixmatch.sol is outlined in Table 1. When any
Ethereum contract is first deployed, the constructor can only be run once. Thus
the constructor code does not need to be referenced for further invocations and
is not stored with the deployed bytecode (but can be found in the calldata of
the deployment transaction).

When compiled, mixmatch.sol is 26, 774 bytes (plus a constructor of 404
bytes). Because of the factory design, this includes the bytecode to create
PET.sol contracts. Ethereum limits contracts to ≈24KB (per EIP170).5 We
simply adjust Truffle’s limit to allow us to benchmark it as a single contract.
However it cannot be deployed on Ethereum today as is. Straightforward options
to bring the code under the limit include: (1) taking PET.sol out of the contract
and having the leader deploy each PET contract and load the addresses back

4 V. Buterin, 2018. You can *kinda* abuse ECRECOVER to do ECMUL in secp256
k1 today.

5 In 2016 when EIP170 was finalized, a 24KB contract could not deploy without
crossing the block gas limit, however the gas limit has increased substantially since.

https://ethresear.ch/t/you-can-kinda-abuse-ecrecover-to-do-ecmul-in-secp256k1-today/2384
https://ethresear.ch/t/you-can-kinda-abuse-ecrecover-to-do-ecmul-in-secp256k1-today/2384

390 D. Demirag and J. Clark

Table 2. Gas costs per function and who runs the function: Alice (A), Bob (B), Trustee
1 as the leader (T1*), or Trustee 2 (T2). Note that many functions are run more than
once.

Contract Function Gas Gas cost ($)

ec.sol Deploy contract 595,517 31.94

Mixmatch.sol
(Absentia DApp)

Deploy contract 6,091,398 326.75

A&B: Load funds 28,040 1.50

1*: Load outputs 300,798 16.13

T1*: Create row 8,741,453 468.90

T1*: Find matching row 37,547 2.01

T1*: Find matching value 40,868 2.19

T1*: Create final decryption 4,430,611 237.66

A&B: Withdraw excess funds 41,110 2.21

A&B: Withdraw funds 39,221 2.10

PET.sol (PET
Sub-DApp)

Deploy Contract 4,681,858 251.14

A&B or T1*: Load ciphertexts 304,668 16.34

T1*: Subtraction 242,131 12.99

T1*: Randomization ZKP 815,340 43.74

T2: Randomization ZKP 393,561 21.11

T1*: Partial dec ZKP 364,298 19.54

T2: Partial cec ZKP 363,612 19.50

T1*: Full cecryption 107,086 5.74

T1*: Load final ciphertexts 173,945 9.33

Table 3. Cost for each participant.

Alice Bob Trustee1* Trustee2

Number of transactions 5 5 44 17

Total gas cost 1,246,712 1,246,712 52,952,603 6,420,996

Total cost in USD 66.87 66.87 2840.41 344.43

into mixmatch.sol; (2) move stateless functions to libraries; (3) split the con-
tract up arbitrarily and use delegatecall to execute the pieces in a common
context; or (4) find ways to optimize the code to reduce its size (it is academic,
proof of concept code, and is very close to the limit, so this should be feasible).

Gas Costs. Table 2 provides the cost to deploy Absentia’s two contracts and one
library, as well as the gas costs of each function. Note that many functions are
invoked more than once in a complete run of Absentia. The gas costs are as

Absentia: Secure Multiparty Computation on Ethereum 391

Table 4. Cost of scaling absentia

Setting Total gas

1 gate, 2 trustees 61,867,023

2 gate, 2 trustees 121,240,622

1 gate, 3 trustees 68,288,019

reported in Truffle’s local network (Ganache). To convert gas into USD, we use
1 gas = 87 Gwei as recorded on Dec 01, 2020.6 The price of ETH is $615.07 for
the same date.7

As the leader of the protocol, Trustee 1 (T1*) has to perform more operations
than the other participants. Table 3 shows the costs per participant. Particularly
expensive tasks for the leader is loading all the ciphertexts for the circuit into
the contract and initializing the memory needed, in particular for each PET,
for the working memory. This is why, for example, Randomization ZKP is so
expensive for T1 as compared to T2 (the code of both functions is identical but
gas costs are 815, 340 versus 393, 561). Trustee 1 initializes many state variables
(more expensive in Ethereum) that are not needed once the function completes;
while trustee 2 overwrites the variables (less expensive in Ethereum). The next
function, Partial Decryption, continues overwriting these variables.

Our design has some room for improvement. For example, in the current
implementation, Alice and Bob have to deposit their inputs for each PET con-
tract that is created (8 in total). A better design pattern (more consistent with
Fig. 1) would have Alice and Bob deposit once in mixandmatch.sol and have the
factory contract initialize the PETS with the correct values. Another improve-
ment would aim to reduce the total transaction count for each participant by
merging operations that are performed in a sequence by the same participant
(we split them into logic blocks to better showcase what the gas was being spent
on).

In Table 4, we show how Absentia scales with additional gates and additional
trustees. If we want to evaluate a two gate circuit, Alice and Bob still perform
the same number of transactions but nearly all of the rest of the functions are
run twice as many times. Note that if the output of one gate is fed into the next
gate, the leader (T1*) will load the inputs for the second gate. Going back to
a single gate, increasing the number of trustees from 2 to 3 is not as expensive.
Each additional trustee has a marginal cost equal to Trustee 2’s cost in Table 3.

4 Absentia on Layer 2

4.1 Roll-Ups

A loose collection of technologies, called Layer 2 solutions, have been proposed
to address certain shortcomings of operating directly on Ethereum (Layer 1)
6 Etherscan.
7 Coinmarketcap.

https://etherscan.io/chart/gasprice
https://coinmarketcap.com/currencies/ethereum/historical-data/

392 D. Demirag and J. Clark

User Bridge (Ethereum) DApp (Arbitrum) Validator

Request: run function
1

Fetch from bridge inbox
2

Evaluate function
3

Update the state
4

Sync ArbOS
5

User Bridge (Ethereum) DApp (Arbitrum) Validator

Fig. 2. Overview of arbitrum transaction submission.

or other blockchains [12]. These solutions generally strive for one or more of
the following: reducing transaction latency, increasing transaction throughput,
or reducing gas costs. In the case of Absentia, reducing gas costs is paramount.
However Layer 2 solutions can also change the threat model; for Absentia, we
require that Alice and Bob can trust the final output without having to verify
any proofs themselves.

The most appropriate layer 2 technology for our requirements is called a
roll-up which targets gas costs. In Ethereum, every transaction is executed (and
thus validated) by every Ethereum node. In a roll-up, transactions are executed
by off-chain nodes called validators. Validators try to convince the Ethereum
network that the result of the transaction execution (i.e., the state change of
the EVM) is correct without the Ethereum nodes having to execute it.

Since Ethereum nodes cannot just ignore the Ethereum protocol’s specifi-
cations for how to validate transactions, the roll-up cannot be implemented on
Layer 1. Rather it is implemented inside its own DApp (Layer 2). This Layer
2 DApp is effectively a container, operating by its own custom consensus rules,
for DApps that want roll-up functionality. The tradeoff is they are isolated from
regular L1 DApps without some additional protocols (e.g., interoperability sup-
port for currency/token transfers and external function calls). For Absentia, we
do not require interoperability with L1 other than having a currency in L2 to
pay the trustees.

There are at least two ways to convince on-chain participants that an off-
chain computation was performed correctly. The first is to prove it with a suc-
cinct proof. SNARKs are one proof-type for general computations that are more
efficient to verify than performing the computation itself. A second approach
(called an optimistic rollup) is to have a validator assert the result and then
allow for anyone to dispute it before finalizing it. Resolving disputes is always
possible by having the Ethereum nodes perform the computation itself, but dis-
putes can be settled in a more succinct way (see [14]). If Alice demonstrates that

Absentia: Secure Multiparty Computation on Ethereum 393

Table 5. Comparison between deploying a plaintext equality test on Ethereum and
deploying on arbitrum (via Ethereum). The links show the reader the actual transac-
tions of a test-run on Kovan/Arbitrum’s respective block explorers. Size is the calldata
in bytes.

Function Ethereum Arbitrum

Tx Gas L1 L1 L2 L2 Size

Tx Gas Tx ArbGas

Deploy ec Link 1, 103, 372 Link 80,152 Link 1, 304, 481 4978

Deploy PET Link 5, 266, 352 Link 386,079 Link 4, 260, 273 24,172

Load Ciphertexts Link 305, 309 Link 7869 Link 820, 507 742

Subtraction Link 260, 729 Link 5469 Link 4, 789, 799 550

T1 Randomization ZKP Link 819, 877 Link 11,488 Link 10, 972, 720 644

T2 Randomization ZKP Link 398, 245 Link 11,440 Link 11, 069, 485 742

T1 Partial Dec ZKP Link 366, 636 Link 11,452 Link 10, 692, 786 742

T2 Partial Dec ZKP Link 366, 089 Link 11,512 Link 10, 689, 113 742

Full Decryption Link 124, 816 Link 6236 Link 4, 258, 675 422

a validator is wrong, the validator is financially punished and Alice is rewarded.
Such validators do less work than Ethereum nodes (as well as validators that
have to produce SNARKs)—therefore, optimistic rollups enable substantially
lower gas costs.

4.2 Arbitrum

Arbitrum is a Layer 2 solution proposed in a USENIX Security paper [14] and
now maintained as a commercial project by Offchain Labs. Currently, they
operate an optimistic rollup on Ethereum. Instead of operating all Arbitrum
contracts (called ArbOS) in a container DApp on Ethereum, ArbOS instead
operates as a side-chain. A bridge contract on Ethereum serves as an interface
between Ethereum and Arbitrum. Figure 2 shows how function calls work on
Arbitrum. A user initiates a transaction on Ethereum to the Bridge Contract
with the instruction to deploy a contract or run a function, along with all the
data required for Arbitrum to perform this transaction. A validator sees new
transactions in the inbox of the bridge, executes one and asserts the result to
ArbOS. After a dispute period, the transaction is considered finalized. Periodi-
cally, the entire state of ArbOS is committed back to Ethereum. As all Arbitrum
transactions are recorded on Ethereum, anyone can compute and compare the
current ArbOS state.

4.3 Absentia on Arbitrum

Testing Platform. Arbitrum runs a testnet with a bridge on Ethereum’s Kovan
testnet. As mentioned above, Absentia is too large to deploy (as a factory con-
tract) within Ethereum’s contract size limit. To experiment with Arbitrum, we

https://kovan.etherscan.io/tx/0x088af056a640c1fe2188678e52484f89b7ba0bd9345bb0578d91c96aa480c59c
https://kovan.etherscan.io/tx/0xa80f0eb0408f8f1c760abbc223b6a3b24780aba4b85f96ecbd6fb0dfe94bd606
https://explorer.offchainlabs.com/#/tx/0x7c82717b52cb133c8855c0833d3cbf9ded19f884764fce78de3bb4e27feb63cd
https://kovan.etherscan.io/tx/0xb76cda2c91907234afc0b971df893a6dbcdf83d482d2ff3d7d29b4a0b313002f
https://kovan.etherscan.io/tx/0x2ec73b92474c991d7b9f8ad1c46f95ef9125513897badb0c0c5faa19bd5b9a55
https://explorer.offchainlabs.com/#/tx/0x2b1e63c81ca8ab7f4a6fe5333daab515a4e7408121771ae58e205ee037bceb50
https://kovan.etherscan.io/tx/0x2cb4bf0f6ce9fc7cabf0c152fdc61ccfff00a0f2e717c85da7eab806fa101b5b
https://kovan.etherscan.io/tx/0x612e19481fff4ddd1c2dfe260908f15c7c74072a1e733597b4bab1c1209169f4
https://explorer.offchainlabs.com/#/tx/0x28b3fa1a91d6d6e13005d352940861a026ac029fbc13a58dc969e98ffb5b392c
https://kovan.etherscan.io/tx/0x6eeb3031c81af252df1fb806ae0a57643c20792df7336004465c6a74792c0016
https://kovan.etherscan.io/tx/0xa31a5653f3bfbdf7bcce4520c2a4f0e8d38fbc5c19036548199f805a4997cf68
https://explorer.offchainlabs.com/#/tx/0xbeff60af08f1b88deabe690322e26794d87595b332f1f1d01095a6a4528c4254
https://kovan.etherscan.io/tx/0x30e8ccff5af6f3489ba2dc11e3198f0216487f380aa2a66ddf97e94650490e88
https://kovan.etherscan.io/tx/0xc08cc82908b7e87e8ddc75695c4f29c3bce3d9a8caced144f003c59e23f4690e
https://explorer.offchainlabs.com/#/tx/0xe3d1ba8bc653397dd67f3bfb602db0acce617668dc2ae2f30e038b4137a60e24
https://kovan.etherscan.io/tx/0x6dd05a76c771089144583a685c2fb9a6b566a626aa86b568230faf83268fdd92
https://kovan.etherscan.io/tx/0xd790b2edd8800a183068b3253d7e5b00e57d850bce8d9b8572494539b58c7e3c
https://explorer.offchainlabs.com/#/tx/0x71535a6b6d0124cbd61a4993e5e831cc4ba151eec60b1c368a79686f3f5bc1f4
https://kovan.etherscan.io/tx/0x477b3e6b645cc672bbbe99ea3e7fa227962a3e1222071c266442a5ab8366e1bb
https://kovan.etherscan.io/tx/0xdd0ffc715dc5733bee36fd99d51898cf978de27ece76777099c4570929039a25
https://explorer.offchainlabs.com/#/tx/0x9f7fba14177790f6dad6ad9bb0ec3017803b466a27182768b11163162a3961c3
https://kovan.etherscan.io/tx/0x59a6282197cbd71b2c25cd5f3547b41ca7baf33322088f35273c97fce5cf8b56
https://kovan.etherscan.io/tx/0xb2a71505f192dd2119634ddd69070c52eb3a3d993aeb632ea8f823eb62f26e84
https://explorer.offchainlabs.com/#/tx/0x724578f12940ebd653613c5037576540ce129ef277e4db67aff135711327e8f8
https://kovan.etherscan.io/tx/0x172804db2abcef274dedfad8f31f84a0bb26c87826842589537f1d511402b282
https://kovan.etherscan.io/tx/0x10788165eacbbe25066c163fa0cf7a5af07da32c05af001d0f05ad8946974c6e
https://explorer.offchainlabs.com/#/tx/0x3515cc045805f2f9af9f378f4725ab4845679ca15ecd2e86758f8d53eb9a7353

394 D. Demirag and J. Clark

implement only the PET sub-module as a standalone contract. We run the tests
with Truffle. Instead of sending transactions to the Arbitrum bridge (as in Fig. 2),
Arbitrum runs a service for developers where transactions are sent (off-chain) to
a relay server (called an Aggregator) which will batch all pending transactions
together as a single Kovan transaction to the bridge (and pay the gas). However
we report the measurements as if the participants were sending the transactions
themselves.

Gas Costs. Table 5 compares the cost of running a plaintext equality test (PET)
on Ethereum (specifically Kovan testnet) and running it on Layer 2 (L2) with
Arbitrum. Note the Ethereum numbers differ slightly from Table 2 as it is
deployed on a different testnet (Kovan instead of private) and we modified it
slightly to be a stand-alone DApp.

Arbitrum creates two transactions (recall Fig. 2): the Ethereum gas cost of
relaying the (layer 1 or L1) transaction to the Arbitrum bridge, and the cost
for the validator to execute the function, measured in ArbGas. The cost of the
first Arbitrum transaction (L1 Gas) is paid with ETH but is invariant to its
computational complexity. It is essentially only a function of its size (compare
L1 Gas to Size). Note that the gas costs listed on the Kovan block explorer
(links under L1 Tx) are for aggregated batches of transactions. We report what
the cost would be to send it directly (not through an aggregator).

The ArbGas cost on Arbitrum should be similar to the gas cost on Ethereum,
however validators do not run EVM bytecode directly. It is translated into Arbi-
trum virtual machine (AVM) bytecode which has its own opcodes and ArbGas
costs. ArbGas has no market price currently. It is expected to be much cheaper
than Ethereum’s gas. In practice, the trustees could act as validators for Absen-
tia transactions as they have to perform the computation anyways. Therefore
we approximate arbgas as free.

A run of PET on Ethereum costs 9,011,425 gas (or 483.38 USD), while on
Arbitrum the cost is 531,697 gas (or 28.52 USD). In this use case, Arbitrum
reduces Ethereum gas costs by 94%.

5 Concluding Remarks

Ethereum can complement secure function evaluation protocols by enabling coor-
dination, providing incentives, and enforcing correctness. Given recent develop-
ments in Ethereum toward performance and scalability, we felt it was an appro-
priate time to benchmark how expensive SFE is on Ethereum. Even though we
expected it to be expensive, we did not imagine a single binary NAND gate
would cost thousands of dollars on Ethereum. Most ‘interesting’ circuits are
probably at least hundreds of gates, with many applications that would require
many orders of magnitude more.

Despite this, we argue that Absentia is still an important research contribu-
tion. It proves the concept works, establishes a lower bound, and it sets a new
research challenge: through improvements, how many gates can be evaluated

Absentia: Secure Multiparty Computation on Ethereum 395

for, say, under $100 USD? Today it might be less than one but we are confident
that future research can improve that number substantially. For example, our
code can be further optimized; the latest MPC techniques can be applied; and
Σ-protocols can be replaced with succinct zero-knowledge proofs. Meanwhile,
Layer 1 and Layer 2 technologies will continue progressing.

Acknowledgements. We thank the reviewers who helped to improve our paper.
J. Clark acknowledges support for this research project from the National Sci-
ences and Engineering Research Council (NSERC)/ Raymond Chabot Grant Thorn-
ton/Catallaxy Industrial Research Chair in Blockchain Technologies and the AMF
(Autorité des Marchés Financiers).

References

1. Andreev, O., Glickstein, B., Niu, V., Rinearson, T., Sur, D., Yun, C.: ZkVM: fast,
private, flexible blockchain contracts. Technical report, Online (2019)

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure mul-
tiparty computations on bitcoin. In: IEEE Symposium on Security and Privacy
(2014)

3. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party compu-
tation. In: SCN (2014)

4. Beaver, D.: Commodity-based cryptography. In: ACM STOC (1997)
5. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the

fiat-shamir heuristic and applications to helios. In: ASIACRYPT (2012)
6. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: Enabling

decentralized private computation. In: IEEE Symposium on Security and Privacy
(2020)

7. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: CRYPTO (1992)
8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-

authority election scheme. In: EUROCRYPT (1997)
9. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practi-

cal covertly secure mpc for dishonest majority-or: breaking the spdz limits. In:
ESORICS (2013)

10. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO (2012)

11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: CRYPTO, pp. 186–194 (1986)

12. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Layer-
two blockchain protocols. In: Financial Cryptography (2020)

13. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher-
texts. In: ASIACRYPT (2000)

14. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
Scalable, private smart contracts. In: USENIX Security (2018)

15. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making spdz great again. In: EURO-
CRYPT (2018)

16. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: IEEE Sympo-
sium on Security and Privacy (2016)

396 D. Demirag and J. Clark

17. McMurtry, E., Pereira, O., Teague, V.: When is a test not a proof? In: ESORICS
(2020)

18. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: EURO-
CRYPT (1991)

19. Sánchez, D.C.: Raziel: Private and verifiable smart contracts on blockchains. Tech-
nical report, arXiv arXiv:1807.09484 (2018)

20. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991). https://doi.org/10.1007/BF00196725

21. Yao, A.C.: Protocols for secure computations. In: IEEE FOCS (1982)
22. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: Using blockchain to protect

personal data. In: IWPE (2015)

http://arxiv.org/abs/1807.09484
https://doi.org/10.1007/BF00196725

	Absentia: Secure Multiparty Computation on Ethereum
	1 Introduction
	1.1 Key Design Decisions

	2 Preliminaries
	2.1 Related Work
	2.2 Background

	3 Absentia: System Design
	3.1 Measurements

	4 Absentia on Layer 2
	4.1 Roll-Ups
	4.2 Arbitrum
	4.3 Absentia on Arbitrum

	5 Concluding Remarks
	References

