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1 I n t r o d u c t i o n  

~Ve present two simple micropayment schemes, "PayWord" and :'MicroMint," 

for making small purchases over the Internet. We were inspired to work on this 

problem by DEC's "Millicent" scheme[10]. Surveys of some electronic payment 

schemes can be found in Hallam-Baker [6], Schneier[16], and Wayner[18]. 

Our main goal is to minimize the number of public-key operations required 

per payment,  using hash operations instead whenever possible. As a rough guide, 

hash functions are about 100 times faster than RSA signature verification, and 

about 10,000 times faster than RSA signature generation: on a typical worksta- 

tion, one can sign two messages per second, verify 200 signatures per second, 

and compute 20,000 hash function values per second. 

To support  micropayments, exceptional efficiency is required, otherwise the 

cost of the mechanism will exceed the value of the payments. As a consequence, 

our micropayment schemes are light-weight compared to full macropayment 

schemes. We "don't  sweat the small stuff": a user who loses a micropayment 

is similar to someone who loses a nickel in a candy machine. Similarly, candy 

machines aren't  built with expensive mechanisms for detecting forged coins, and 

yet they work well in practice, and the overall level of abuse is low. Large-scale 

and/or  persistent fraud must be detected and eliminated, but if the scheme de- 

livers a volume of payments to the right parties that  is roughly correct, we're 

happy. 

In our schemes the players are brokers, users, and vendors. Brokers authorize 

users to make micropayments to vendors, and redeem the payments collected 

by the vendors. While user-vendor relationships are transient, broker-user and 

broker-vendor relationships are long-term. In a typical transaction a vendor sells 

access to a World-Wide Web page for one cent. Since a user may access only a few 

pages before moving on, standard credit-card arrangements incur unacceptably 

high overheads. 

The first scheme, "PayWord," is a credit-based scheme, based on chains of 

"paywords" (hash values). Similar chains have been previously proposed for dif- 

ferent purposes: by Lamport  [9] and Haller (in S/Key) for access control [7], 

and by Winternitz [11] as a one-time signature scheme. The application of this 
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Ethereum Payment Channel in 50

Lines of Code

With the talk of state/payment channels being a “future” scalability

option in Ethereum, I wanted to write a contract to show that they’re

more than doable now. You don’t need to wait for Raiden, you can set up

your own trustless channels right now.

I’ll walk through the solidity code in channel.sol here:

https://github.com/mattdf/payment-channel

Let’s say Alice and Bob want to set up a payment channel for something

that requires micropayments that they don’t want to commit on chain to

save on transaction fees. In this case, Bob may be paying Alice to manage

a social media presence, and he pays her 0.001 ETH per tweet(24 cents) 

— if Bob were to make an on-chain transaction for each tweet, 20% of

Alice’s income would be eaten up by fees.

On one hand, Alice does not want to do 100 tweets of work and trust Bob

will pay her at the end for all 100 tweets, and on the other hand, Bob

doesn’t want to pay Alice for 100 tweets all at once for her to just

disappear and not do any work.

We can solve this with a payment channel where Bob commits

100*0.001 = 0.1 ETH to the channel smart contract, where the money

can only either go to Alice or back to Bob. We see the constructor here:

Matthew Di Ferrante Follow

Jun 5, 2017 · 4 min read
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EthWord Function Gas ETH USD
Channel 312 031 0.00539 $0.689
closeChannel (50) 18 905 0.00033 $0.042
closeChannel (100) 22 205 0.00038 $0.049

Table 1. Function cost. Since closeChannel is dependent on how long the hash chain
is for the claimed payment, we shows costs for length 50 and length 100.

that holds 1.00 ETH in escrow and the PayTaker supplies proof that they are
entitled to, say, 0.45 of the 1.00 ETH by invoking this function. For Pay50, the
proof is the claimed amount as signed by PayMaker and the contract validates
the signature. For EthWord, it is a payword (i.e., the output of a hash function).
In this case, the PayMaker might make a hash-chain of length 100, construct the
contract with the tip, specify the value of each hash as 0.01 ETH, and funds the
contract with 1.00 ETH.

Note that the contract does not care about the length of the hash chain
because there is no simple way (nor reason) for the PayTaker to actually verify
the length of the hash-chain. If it is too short, then PayMaker cannot make
payments after a certain point. If it is longer, than PayTaker needs to stop
accepting payments in excess of what she has verified to the contract to hold.
Similarly, since the length of the hashchain is unknown to PayTaker, the contract
does not require a specific amount to be funded. The PayTaker will just treat
this amount as the maximum.

The PayMaker can make an o✏ine payment to the PayTaker by sending a
hash (again see Protocol 1). Note that the hash is in no way bound to the identity
of the PayTaker—the smart contract binds the use of the hash to the PayTaker.
Next, note that technically the PayTaker can compute the chain and submit
any hash from this chain to claim(), however they are incentivized to send the
most valuable hash. For this same reason, the PayMaker can then later ‘up the
payment’ by sending a more valuable hash to the PayTaker. This can be repeated
until the PayMaker runs out of hashes or PayTaker wants to run claim(). This
is called replace-by-incentive [14] in the payment channel literature.

4.2 Evaluation

Footprint. Relative to Pay50, EthWord does not add to the lines of code; in
fact, it even shaves a few o↵. The more important property is the size of the
payment sent to the receiver; this is reduced from a digital signature to a hash
or from 776 bits to 264 bits. Note that it is even possible to reduce EthWord to
256-bits; an extra 8 bit value representing the length of the hash from the tip is
included for a more convenient loop.

Gas Costs. As of January 15th, 2019, the weighted average price of 1 gas is
17.26⇥10�9 ETH3 and the exchange rate of 1 ETH to USD is $127.85.4 Table 1
shows the gas costs of each function in EthWord if run successfully. The cost

3 https://ethgasstation.info/
4 https://coinmarketcap.com/
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5% fee -> settle for amounts ~$15
1% fee -> settle for amounts ~$75
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