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Abstract. We revisit the 1997 PayWord credit-based micropayment
scheme from Rivest and Shamir. We observe that smart contracts can
be used to augment this system, apply to ‘claim or refund’ paradigm of
cryptocurrencies to remove the counter-party risk inherent in PayWorld,
and use a smart contract to ‘staple’ real value (in Ether) to payments in
the system. Our implementation is more concise than any Ethereum pay-
ment channel we are aware of and the offline payments are very compact
values (264 bits). It only uses hash functions and not digital signatures.
EthWord becomes cheaper than standard Ethereum transfers when more
than 16 payments between the same participants are made and appears
to maintain its advantage for up to 1000+ transactions, at which point
signature-based payments become cheapest. The main drawback of Eth-
Word is the moderate gas price of using the system—despite dropping
signatures, it is still priced out of the micropayments use-case. Like any
payment channel, requires only two on-blockchain function calls to open
and close the channel, while allowing the rest to be made off-blockchain.

1 Introduction

PayWord is a credit-based payment system, envisioned for small payments pro-
posed by Rivest and Shamir [22]. The mechanics we will turn to later, but for
now, the reader can think of tokens being issued that have some value. The key
advantage of PayWord is its efficiency and succinctness drawn from using only
hash functions. A limitation of PayWord is that tokens do not have inherent
value; their value is based on the trust assumption that a counter-party will
honour the value ascribed to them. With Ethereum, we can fix this issue by sta-
pling cryptocurrency to the token through the use of a smart contract. Finally,
while Ethereum already has internal functionality for payments, EthWord enables
payments to be made off-blockchain and settled once on-blockchain.

This transformation turns PayWord from a trust-based credit system to an
escrow-based payment system; not unlike offline payment channels and networks
being proposed for Bitcoin (e.g., the Lightning Network [20]). It is known that
an Ethereum-based payment channel will be less complex than a Bitcoin one,
since most of the complexity of Bitcoin-based payments channels comes from
Bitcoin’s limited scripting language [13]. EthWord is a uni-directional payment
channel that can be chained into a payment network and has very compact
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(e.g., 256-bit) payments. It thus might be an interesting primitive to enhance in
the same ways other payment channels [4,20] have been: adding features [10],
increasing efficiency [6,15], and adding transactional privacy [7,8,12,23].

2 Background

Beginning in the 1980s, a significant amount of the cryptographic literature
has been devoted to the design of e-cash systems. In the 1990s, many startups
worked toward deployment of this technology but most ultimately failed [17].
By late 2008, when Bitcoin was first proposed [16], innovation on both the aca-
demic and commercial side of digital cash had dried up. Now Bitcoin’s success
has breathed new life into the field: cryptocurrencies have billion dollar market
capitalizations and academic conferences like Financial Cryptography are again
publishing papers on financial cryptography.

At first glance, Bitcoin seems like a major departure from the e-cash systems
from the 80s and 90s. In reality, its ‘academic pedigree’ is a novel combination
of pre-existing ideas [18]. Similarly, researchers are re-discovering long lost ideas
from the e-cash literature and finding new ways to apply them in a blockchain
world. For example, blinded coins were a staple of e-cash [3] that re-emerge,
along with accumulators [24], in post-Bitcoin systems like zcash [14,25]. Enabling
micropayments through lottery-based probablistic payments of macropayments
was explored in the 90s [9,21,27] and re-emerged for Bitcoin [19]. In this paper,
we ‘re-discover’ the 1997 payment system PayWord from Rivest and Shamir [22].

3 Preliminaries

Hash Chains. A hash chain [11] is constructed by iteratively applying a public
one-way hash function H() on a random value s. Let the notation Hi+1(s) =
H(Hi(s)). A hash chain of length n + 1 is:

〈
s,H(s),H2(s),H3(s), . . . ,Hn−1(s),Hn(s)

〉

where s (technically equivalent to H0(s)) is called the seed and Hn(s) is called
the tip. Given the hash is preimage resistant against a computationally bounded
adversary, knowing some value in the chain Hx(s) does not reveal any values
‘up’ the chain from it, including the seed:

〈
s, . . . ,Hx−1(s)

〉
. Conversely the value

Hx(s) can be iteratively hashed to produce the rest of the values ‘down’ the
chain ending up producing the tip value.

Recognition. If Alice meets Bob at a party, Bob can give the tip of a chain to
Alice as a token [1]. Later when Bob meets Alice again, he can provide Hn−1(s)
as proof he is the same person that gave her the token. On the subsequent visit,
he provides Hn−2(s) and so on for n visits. Of course, Bob could more directly
provide Alice with his public key and sign messages each visit, however hash
chains avoid the relatively expensive public key operations of a signature.
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Payments. In PayWord, recognition is used for credit-based payments. A Pay-
Maker generates a length n + 1 hash chain and provides a signed1 tip to a
PayTaker. They agree that each preceding value in the hash chain has a speci-
fied unit of value owed to the PayTaker by the PayMaker. For example, say n is
100 and the value of each hash in the chain is a $1 debt owed to the PayTaker. To
expense $27, the PayMaker provides Hn−27(s) to the PayTaker who will verify
that hashing it 27 times produces the signed tip. The PayMaker can increase
the amount by sending further hashes, up to $100 (the capacity), after which,
the payment channel is exhausted and must be reinitiated.

Payment Channels. Payment channels were reconceived for Bitcoin [4,20] to
offer offline payments between Alice, Bob, and possibly with some intermediaries
relaying transactions. In Bitcoin, payment channels work the same as EthWord
(in other words, EthWord is a payment channel) but involve setting up a number
signed transactions (some pushed to the blockchain and others held in reserve)
and the payments themselves are one or more full and signed Bitcoin transac-
tion. While EthWord is a payment channel, it is a simple one. It can only send
payments from the PayMaker to the PayTaker (thus it is unidirectional) and it
can only send payments in increasing amounts (thus it is monotonic). Making
a bidirectional payment channel, where payment values can be increased and
decreased arbitrarily, is interesting future work.

Pay50. A recent blog post by Di Ferrante argues for the simplicity of Ethereum-
based payment channels (relative to Bitcoin) and he offers a ‘50 lines of code’
Solidity implementation of a uni-directional, monotonic channel we will name
Pay50 for the purposes of this paper [5]. As a deliberate barebones implementa-
tion, it is simple and it relies on offline payments to be signed by the sender. We
describe it further in the next section.

4 EthWord Implementation

EthWord is a line-by-line replication of Pay50, replacing the use of digital sig-
natures with hash functions as described in the original PayWord proposal. We
slightly modernize Pay50 to make it compliant with changes introduced in the
Solidity language.2 We replicate Pay50 to enable an isolated comparison between
a signature-based approach (Pay50) and hash-based (EthWord) approach.

The primary issue with PayWord is that payments have no actual value and
only represent an agreement to pay. In EthWord, we staple Ethereum’s internal
currency ether (ETH) to the payments through a smart contract to give them
real value. Thus EthWord eliminates the counter-party risk in accepting payments
that is inherent in PayWord, and this is only possible because payments are
backed by both a digital currency and a decentralized execution environment.

Both Pay50 and EthWord follow the standard paradigm used in the literature
to eliminate counterparty risk (sometimes called claim-or-refund [2]). If Bob
1 The signature is only for non-repudiation, not for future authentication.
2 Source code: https://github.com/MadibaGroup/2017-EthWords.

https://github.com/MadibaGroup/2017-EthWords
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1. The PayMaker runs the constructor of EthWord.
2. The PayMaker opens the contract by specifying the identity of PayTaker, the

validity period of the channel, how much each hash is worth, and funds the
contract. The PayMaker will send the contract address to PayTaker.

3. The PayTaker will check the parameters of the contract to ensure it is funded,
how long she has to settle the account before the PayMaker can withdraw his
deposited funds, and the total amount of the deposited funds. When satisfied,
she stores the hashchain tip offline.

4. Offline, the PayMaker will make payments by sending hash values. The Pay-
Taker will check that the value iteratively hashes to the tip for a correct
number of iterations corresponding to amount of payment she expects. If
PayMaker wants to make successive payments, they send a new hash that
represents the new total amount to be paid to the PayTaker.

5. At any time while the contract is open, PayTaker can submit a hash value and
receive the appropriate payment. If the PayTaker has not run this function
and the validity period expires, the PayMaker can withdraw all the money in
the contract and close it.

Protocol 1: The on-blockchain and off-blockchain steps in EthWord payments

(the PayMaker) wants to send up to X ETH to Alice (the PayTaker), he prepays
by loading X ETH into a smart contract that the PayTaker can withdraw from
when specified conditions are met. The PayMaker also sets a deadline for the
PayTaker to withdraw, after which he can release the escrowed funds back to
himself. The PayTaker checks that the contract is properly formed and funded;
only then will she accept payments from the PayMaker.

4.1 EthWord Code Design

As EthWord is a modification of Pay50, we will discuss the design of both in
parallel. Both use the constructor to initially setup the contract. In addition,
they have two functions that both close the channel: one is used by the PayTaker
to claim a payment and other is used by the PayMaker to dissolve the contract
after it has timed out. EthWord is summerized in Protocol 1. The constructor
for both Pay50 and EthWord establishes the core components of the contract:

• PayTaker: msg.sender for the contract creation.
• PayMaker: an address passed into the constructor.
• Total available funds: the constructor allows an amount of Ether to be trans-

ferred to the payment channel contract (the constructor is marked payable).
• Timeout: a validity period passed into the constructor. The contract also

stores the block timestamp of when the constructor was run. These values
are added together and when they exceed any future block timestamp, the
self-destruct function is permitted to run allowing the PayMaker a refund.
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Table 1. Function cost. Since closeChannel is dependent on how long the hash chain
is for the claimed payment, we shows costs for length 50 and length 100.

EthWord Function Gas ETH USD

Channel 318 953 0.00539 $0.689

closeChannel (50) 18 757 0.00033 $0.042

closeChannel (100) 21 907 0.00038 $0.049

Note that as implemented, the timeout functionality in both is timestamp
dependent which could enable the PayMaker to refund earlier than allowed, or
alternatively be locked out from refunding, as a result of miner manipulation of
the timestamps. This is feasible for adjustments of approximately 900 s. There-
fore, the contract timeout should be considered ‘fuzzy’ or imprecise.

For EthWord specifically (not Pay50), the constructor also establishes the
payword tip and the amount of Ether each payword is worth. Consider a contract
that holds 1.00 ETH in escrow and the PayTaker supplies proof that they are
entitled to, say, 0.45 of the 1.00 ETH by invoking this function. For Pay50, the
proof is the claimed amount as signed by PayMaker and the contract validates
the signature. For EthWord, it is a payword (i.e., the output of a hash function).
In this case, the PayMaker might make a hash-chain of length 100, construct the
contract with the tip, specify the value of each hash as 0.01 ETH, and funds the
contract with 1.00 ETH.

Note that the contract does not care about the length of the hash chain
because there is no simple way (nor reason) for the PayTaker to actually verify
the length of the hash-chain. If it is too short, then PayMaker cannot make
payments after a certain point. If it is longer, than PayTaker needs to stop
accepting payments in excess of what she has verified to the contract to hold.
Similarly, since the length of the hashchain is unknown to PayTaker, the contract
does not require a specific amount to be funded. The PayTaker will just treat
this amount as the maximum.

The PayMaker can make an offline payment to the PayTaker by sending a
hash (again see Protocol 1). Note that the hash is in no way bound to the identity
of the PayTaker—the smart contract binds the use of the hash to the PayTaker.
Next, note that technically the PayTaker can compute the chain and submit
any hash from this chain to claim(), however they are incentivized to send the
most valuable hash. For this same reason, the PayMaker can then later ‘up the
payment’ by sending a more valuable hash to the PayTaker. This can be repeated
until the PayMaker runs out of hashes or PayTaker wants to run claim(). This
is called replace-by-incentive [13] in the payment channel literature.

4.2 Evaluation

Footprint. Relative to Pay50, EthWord does not add to the lines of code; in
fact, it even shaves a few off. The more important property is the size of the
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Fig. 1. The total gas cost of running the payment channels EthWord, Pay50, and the
internal Ether Transfer as a function of the number of payments. Internal transfers
are most economical up to 16 transactions, then EthWord is most economical, and
we extrapolate that Pay50 (at a gas cost of around 460 000) will only become more
economical when the transactions exceed 1000.

payment sent to the receiver; this is reduced from a digital signature to a hash
or from 776 bits to 264 bits. Note that it is even possible to reduce EthWord to
256-bits; an extra 8 bit value representing the length of the hash from the tip is
included for a more convenient loop.

Gas Costs. As of January 15th, 2019, the weighted average price of 1 gas is
17.26×10−9 ETH3 and the exchange rate of 1 ETH to USD is $127.85.4 Table 1
shows the gas costs of each function in EthWord if run successfully. The cost
of the claim function includes checking if the provided payment (hash) is part
of the hash chain (if when iteratively hashed, it results in the tip value). Thus
the cost of claiming will vary on how many times the hash must be iterated.
For example, consider a channel with 100 payment values worth 0.01 ETH each.
Running claim on the payment value representing 0.05 ETH will require hashing
the value 5 times. The payment value of 0.95 ETH will require 95 hashes.

Figure 1 shows the total gas cost of running the payment channels EthWord,
Pay50, and the internal ether transfer as a function of the number of payments
(from 1 to 100). At 100, the cost by EthWord is 334 236 which is still about 30%
less than the cost of running Pay50 that must verify a digital signature (i.e.,
Pay50 uses Solidity’s ecrecover with some additional processing logic).

Contract Security. As mentioned above, the contract depends on timestamps
for allowing a refund after an elapsed time. Further, once the contract is refund-
able, the PayTaker can still close the contract and receive payment assuming
they have a payment proof. If PayTaker and PayMaker try to close the contract

3 https://ethgasstation.info/.
4 https://coinmarketcap.com/.

https://ethgasstation.info/
https://coinmarketcap.com/
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at the same time, transaction ordering will be arbitrary, subject to a gas auc-
tion, and subject to miner manipulation. For both of these issues, the PayTaker
simply needs to be aware. Well before the timeout, the PayTaker has exclusive
control over closing the contract.

Last, consider a case where the PayTaker is given a payment of 0.45 ETH
from a contract holding 1.00 ETH. After receiving the 0.45 ETH at the address
of the PayTaker (call it T), note that T may be a contract address and if so,
it’s fallback function will be allowed to run. Logically, this function could recall
close and result in an addition 0.45 ETH—a reentrancy attack. The mitigation
is the standard one: using send which does provide enough gas to T’s fallback
function to make an additional function call.

5 Discussion

Forming payment networks. Consider a third party, in addition to the Pay-
Maker and the PayTaker, called an intermediary. If PayMaker establishes an
EthWord channel with the intermediary and the intermediary establishes an Eth-
Word channel with PayTaker, and both channels use the same tip, then payments
can be routed through the intermediary without trusting it. This requires one
small modification: PayTaker can run closeChannel() in both contracts. It can
also admit further modifications: for example, the intermediary might modify
closeChannel() so that it keeps some fraction of the total payout as a fee.

Porting to Bitcoin. Bitcoin’s scripting language is purposely limited, com-
pared to Ethereum, to ensure scripts execute efficiently and support Bitcoin’s
core functionality of digital money. Many PayWord components are supported
in Bitcoin script, including but not limited to locking transactions with a hash
image that requires a pre-image to spend; and the ability to iteratively hash
elements. However it does support looping nor dynamically changing how an
output can be split. A moderate extension to Bitcoin’s scripting language could
enable PayWord on Bitcoin; one proposal is MicroBTC [26].

Micropayments. With a total gas cost (to construct, open, and claim within
a contract) of $0.75 or more, EthWord (or other Ethereum-based payment net-
works) are not suitable for true micropayments. Even to send $100 of value, it
represents a 0.75% fee. The simplest internal Ethereum transaction costs 21 000
gas so EthWord will have to replace 16 transactions to pay for itself.

Prepaying. A limitation that underlies almost all payment channels is the
fact that payments have to be prepaid. Without some broader economic infras-
tructure, payment channels are similar to using prepaid cards, something we
expect compensation for (generally, customers pay for credit; preloading a card
or account is giving the merchant credit which the merchant should pay for5). If
Alice were to pay all her bills for a single year using EthWord (or other payment

5 For example, a $50 Apple Store prepaid card might sell for $40 or using a preloaded
Starbucks app might result in rewards that can be redeemed for future purchases.
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channel), she would have to have enough Ether for an entire year on the first
day of the year. For many people, this would be a cash flow issue.

Trickling. One issue in payments is fairness or fair exchange. When the pay-
ment is made on-blockchain for a token that is already on-blockchain, the swap
of payment for token can be made atomic. However when the purchase is off-
blockchain, either the purchased good or the payment has to be released first,
leading to counter-party risk. Some purchases are divisible (e.g., electricity pur-
chased to charge an electric car) and in these cases, payment channels like Eth-
Word are useful for trickling small payments in exchange for small divisions of the
purchased good. If one party unfairly aborts, the value that is forfeited is small
and bounded. Trickling can also be used for sending funds via an untrusted inter-
mediary when the payment network approach cannot be used—e.g., if the inter-
mediary is a mixing service that is anonymizing the payment stream amongst
other indistinguishable output payment streams.
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