
Towards Automatically Penalizing Multimedia
Breaches

(Extended Abstract)

Easwar Vivek Mangipudi
Purdue University

emangipu@purdue.edu

Krutarth Rao
Hewlett Packard

raokrutarth@gmail.com

Jeremy Clark
Concordia University
j.clark@concordia.ca

Aniket Kate
Purdue University
aniket@purdue.edu

Abstract—This work1 studies the problem of automatically
penalizing intentional or unintentional data breach (APB) by
a receiver/custodian receiving confidential data from a sender.
We solve this problem for multimedia data by augmenting a
blockchain on-chain smart contract between the sender and
receiver with an off-chain cryptographic protocol, such that any
significant data breach from the receiver is penalized through a
monetary loss. Towards achieving the goal, we use an oblivious
transfer scheme when used with a robust watermarking and
a claim-or-refund blockchain contract provides the necessary
framework to realize the APB protocol in a provably secure
manner. In our APB protocol, a public data breach by the
receiver leads to her Bitcoin (or other blockchain) private
signing key getting revealed to the sender, which allows him to
penalize the receiver by claiming the deposit from the claim-or-
refund contract. Interestingly, the protocol also ensures that the
malicious sender cannot steal the deposit, even as he knows the
original multimedia document or releases it in any form.

I. INTRODUCTION

Data breach attacks on cloud hosts have become common

place [1], [2], [3], [4], [5], the reasons for which vary from

compromises of ill-maintained data servers to careless data

custodians. Although it has been observed and reported that

90% of these data breaches can be avoided with good security

practices on the custodian’s infrastructure [6], there is no

evident decrease in the number. In these cases, taking legal

actions is not only expensive and time consuming but it is also

difficult to establish the responsibility in today’s geo-politically

distributed data flows.

This work aims at raising the bar for the data receivers/cus-

todians by introducing a complementary security mechanism

that is inexpensive, automated, and is not restricted by the

geo-political boundaries. In particular, our goal is to make

the data custodians more accountable through automatically

enforceable monetary penalties resulting in immediate loss

of funds, and we call the associated contract the automated
penalization of breach (APB) contract. Applicability scenarios

for APB contracts range from industrial media custodianship,

leaking privately shared personal data (pictures and other me-

dia files) of others on social media and even to non-disclosure

agreements between mutually distrusting entities [7].

1The full version of this work can be found at
https://eprint.iacr.org/2018/1050.pdf

Example Scenario I – Data Custodianship: Data Cus-

todianship refers to the responsibility of safe storage and

custody of the data [8]. A serious breach of the storage

typically results in criminal litigation against the custodian.

APB can be useful when legal action is undesirable due to

the uncertainty of recovering the payment (which increases

if the winning party is owed court costs in addition to the

actual remedy) [9]. We assume that the data owner/sender

and the custodian/receiver agree on an amount of money that

will be awarded to the owner should specified documents be

demonstrably leaked by the custodian. Towards automatically

ensuring that the owner will receive the funds, this amount

could take the form of a surety bond that is held in trust

by a Bitcoin or other permission-less/permissioned blockchain

based cryptocurrency smart contract.

Example Scenario II – Media Download: In the case of

a users downloading paid media that should not be publicly

shared on online platforms, the downloaders make a timed

deposit along with the actual payment, for a agreed upon time

and value for the download. The deposit can be forfeited by

the media provider upon dishonest sharing of the content, in

case of no such incident it will be returned to the download-

er/customer.

APB does not preclude the use of the court system, it simply

complements it, or shifts the responsibility of bringing legal

action to the entity seeking to recover their bond. Allowing

an escalation to court is important as some disclosures are in

the public interest (whistle-blowing) [10]. In fact, in certain

cases, a third party might pay the value of the bond for the

information (news media, crowdfunding, etc.). We expect that

the proposed mechanism encourages the parties involved to

follow better security practices and the proposed APB protocol

is a step in that direction.

Contributions. In the form of APB, we formalize the

problem of automatically settling intentional or unintentional

data breaches with a Bitcoin (or other blockchain) smart

contract, eschewing the traditional recourse of costly legal

action. Our APB protocol is a crypto-augmented smart contract

system to obtain an arbitrator-free settlement. It consists of

four main components: a claim-or-refund smart contract, a

robust watermarking scheme, a oblivious-transfer scheme and

340

2019 IEEE European Symposium on Security and Privacy Workshops

© 2019, Easwar Vivek Mangipudi. Under license to IEEE.
DOI 10.1109/EuroSPW.2019.00044



a non-interactive zero knowledge (NIZK) proof for mutually

distrusting parties.

In our core protocol, the sender and receiver create a claim-

or-refund transaction on Bitcoin [11], [12], [13] where an

amount is deposited that can be spent at any time with a jointly

signed transaction, or spent after a period of time by an sender-

only signed transaction. The document provided to the receiver

has the receiver’s signing (private) key embedded in it with a

robust binary watermarking scheme that cannot be removed

(or retrieved) by anyone except the embedding party. The

challenging aspects of the APB protocol involve arranging for

the signing key to be embedded such that (1) the sender does

not learn the value of the key at the time of embedding, (2) the

receiver does not learn the document contents until the key is

embedded, and (3) the sender is convinced the embedded key

is the receiver’s correct signing key. Within these constraints,

to perform the embedding the parties must jointly perform

a two-party computation with their respective private inputs.

Our protocol securely realizes this two-party computation to

ensure that the sender can retrieve the receiver’s embedded

key from the document if it leaks (widely enough to reach the

sender) and spend the deposited cryptocurrency.

II. AN OVERVIEW OF APB

Problem Definition. We consider a setting where a sender

wishes to disclose a multimedia document M to a receiver.

The receiver is expected to hold a public key-secret key pair

(pk, sk), where the key sk is a signing key of a (say) Bitcoin

wallet corresponding to pk. Instead of the sender directly

sending M to the receiver, we expect the sender and receiver

to jointly compute a function f((M,pk), sk) which should

provide the receiver a version Msk of M that has been tagged

(or robustly watermarked) with the key sk. The protocol

should abort (or not produce a meaningful Msk) if sk from the

receiver and pk from the sender are not a matching key pair.

At the end of the protocol, the sender does not learn sk or Msk

and the receiver does not learn any further information about

M . The receiver’s Bitcoin wallet holds the escrow deposit for

accountability.

We consider the problem in a mutually distrustful setting,

and either the sender or the receiver can be malicious. A

malicious sender can try to learn the signing key of the

receiver so as to steal the deposit. When appropriate, he

can also make the document public and try to accuse the

receiver of dishonest disclosure. The malicious receiver, on

the other hand, can try to remove/replace the watermark from

the obtained document, and release the modified version to

the public without revealing her key. In such an adversarial

setting, we wish to satisfy the following privacy and integrity

goals:

- Sender Privacy: Before the transfer completes, no informa-

tion regarding the document is available to the receiver.

- Receiver Privacy: Before the disclosure of document by the

receiver, no information regarding the receiver’s signing key

is available to the sender.

- Sender Integrity: In case of false accusation by the sender,

no action is taken.

- Receiver Integrity (Revealing property): In case of disclosure

of the document by the receiver, the signing key of the receiver

is revealed to the sender.

We formalize these properties as an ideal functionality in

Figure 4 in Section V.

Solution Overview. We propose the APB protocol, depicted

in Figure 1 involving the two parties Sender and Receiver.

The sender has the multimedia document M and the receiver

has the signing key sk. The receiver initially makes a time-

locked bitcoin deposit of an agreed value of funds that can be

opened only if the signing-key of the receiver is available. The

sender divides the document into several blocks and creates

two watermarked versions (corresponding to 0 and 1) for each
block. The parties run multiple 1-out-of-2 Oblivious Transfer

(OT 2
1 ) protocol instances, one for transfer of each of the

document blocks. The sender uses the watermarked blocks as

inputs while the receiver uses each of the bits of his signing

key as choice bits for the OT 2
1 s and obtains one version of

each block i.e., for a 256-bit signing key of the receiver, the

sender (in the simplest case) divides the document into 256

blocks and creates two versions for each block using robust
watermarking. The sender and receiver then perform 256 OT 2

1

s, where the choice bit for each OT 2
1 is each of the bits of

256-bit key of the receiver. The receiver also proves to the

sender in zero knowledge that the signing key used for the

deposit is indeed formed of the bits used for OT 2
1 s.

As the document is transferred through oblivious transfer,

the sender can not gain any information about the signing-key

of the receiver. However, if the document is revealed/disclosed

before the time of expiry of the agreement, the sender learns

the signing key of the receiver from the watermark of the

revealed document. He can then proceed to penalize the

malicious receiver by transferring the funds to himself. The

multiple OT 2
1 s, one for each block, ensure that the watermark

embedded in the document corresponds to the signing-key bits.

To transfer the funds out of the deposit, the sender needs

both his and the receiver’s signature which can not be obtained

before the document is revealed to the public. Thus, he can

penalize the receiver only if she is dishonest. If the receiver

is honest, the agreement would expire after the agreed time

and the funds will be transferred back to her. The transactional

logic of the deposit is depicted as pseudo-code in Algorithm 1.

The receiver instead of full disclosure, can disclose the

document partially to the public. She can reveal, say, half of

the total 256 blocks received, so that only half the number of

bits of her signing-key are revealed to the sender. However,

for a 256-bit key of the receiver, the sender can in-fact divide

the document into more numbers of blocks than just 256. This

way, he can embed the key multiple times in the document,

for example, the sender can divide it into 512 parts so that

the key gets embedded twice. The sender can perform 512
OT 2

1 s with the receiver using her 256-bit key twice for the

same. In such a scenario, the sender can extract more number

of bits upon partial disclosure. Also, the information in the

341



Unauthorized sharing

Penalization

`

Bitcoin Network

`

Watermarking

Data transfer

Contract creation

Sender Receiver

Confidential
data/document

Oblivious
Transfer

Key Extraction

Fig. 1: APB Protocol: High-level View

Algorithm 1 Claim-or-Refund contract logic

1: if Current time tnow ≥ t then
2: Direct the locked funds back to the contract creator
3: else
4: if Both the sender and receiver sign the transaction then
5: Direct the funds to the mentioned recipient
6: else
7: Transaction is invalid

document may not be “uniform” throughout the document, so

the sender can also try to embed the key multiple times in a

document part where there is “more” information by dividing

it into more number of parts at those document locations.

Notice that our APB protocol augments cryptographic prim-

itive with a smart contract. Given the limited expressibility of

Bitcoin contracts our (off-chain) cryptographic solution seems

necessary but this may not be the case for turing-complete

systems like Ethereum [14]. However, defining the complete

solution as a smart contract will not be or may not remain

inexpensive enough.

III. FUNCTIONAL BLOCKS

Robust Bit Watermarking. Once the dishonest receiver

reveals the document, the sender learns the signing-key using

watermark of the revealed document. For watermarking doc-

ument blocks, we use a robust bit watermarking scheme with

the property that the watermarked bit 0 or 1 cannot be removed

without loss of significant information from the block. The

actual watermarking scheme used can vary based on the type

of the document being watermarked. We mostly follow the

definition of robust watermarking by Adelsbach et al. [15].

Let M denote the set of all documents, WM ⊆ {0, 1}
the set of two watermarks. K indicates the set of all keys

and λ indicates the security parameter. The watermarking

scheme is defined using three algorithms, one each for key

generation, embedding and detection of the watermark. Gen
(λ) is a probabilistic algorithm that outputs a key k ∈ K for

the given λ. Embed (M,w, k) takes the multimedia document

M , watermark w ∈ WM and key k as inputs and generates a

watermarked document M ′ while Detect (M ′, k, w) takes the

watermarked document M ′, the key k and the watermark w as

input and outputs � if the watermark in M ′ matches w, else

outputs ⊥. For non-blind watermarking schemes, the detection

algorithm takes the original document M also as input.

We require the watermarking scheme to satisfy the three

properties of Effectiveness, Robustness and a weaker version

of imperceptibility (as in [15]) called Bit-imperceptibility.

Effectiveness indicates that a key k used to embed a watermark

should also detect the watermark i.e., ∀M ∈ M, ∀k ∈
K and ∀w ∈ WM, if Embed(M,w, k) → M ′, then

Detect(M ′, k, w) = �. Robustness states that no proba-

bilistic polynomial-time (PPT) adversary should be able to

effectively change or remove the watermark in the water-

marked document without leaving the document itself unus-

able. Bit-imperceptibility indicates that the knowledge of the

watermarked document with some unknown watermark bit

w ∈ WM should not reveal any additional information on

the watermark bit that can be feasibly extracted.

Oblivious Transfer. 1-out-of-2 oblivious transfer (OT 2
1 ) is a

two-party (a sender and a receiver) computation mechanism,

where the sender has two messages M0 and M1 and the

receiver has a bit b ∈ {0, 1}. The goal is to transfer Mb

to the receiver and at the end of the protocol, the receiver

should not learn any information about M1−b and the sender

should not learn b. We consider the oblivious transfer protocol,

called the Verified Simplest OT by Doerner et al. [16] which

is an extended version of OT protocol by Chou et.al. [17].

The multiplicative group G used for the protocol is Gap-DH

[18] and the additional verification step forces the receiver to

make oracle queries before receiving the encryptions from the

sender, there by making the protocol UC-Secure.

Bitcoin Claim-or-Refund Contract. Bitcoin [19] is a peer-to-

peer decentralized network where participants are represented

by a public and private key pair. The hash of the public key

serves as the user’s address and the private key is used to sign

342



and authorize transactions. Script in Bitcoin is a stack-based

language simulating a Push Down Automata and is used to

write a smart contract. Spending funds typically involves exe-

cuting/running two scripts on the spender’s machine. The first

is scriptPubKey which is embedded in the input transaction

under the script field. It entails the conditions that must be

met to spend the unspent transaction outputs (UTXO). The

second one is scriptSig which is an unlocking script provided

by the user who wants to spend the UTXO. When scriptSig
and scriptPubKey are executed in sequence, the user gets to

know if the transaction is valid. Bitcoin offers both sender and

receiver of the funds an aspect of privacy until the funds in

the deposit are directed to a recipient i.e., in our case, after

the documents become public and the key gets revealed to

the sender. Such privacy is not observable in any other non-

blockchain financial system.
Time-Locked Compensation Deposits: We construct

scriptPubKey with two prominent Bitcoin scripting

language operators: OP CHECKLOCKTIMEVERIFY

and OP CHECKMULTISIGVERIFY.
OP CHECKLOCKTIMEVERIFY allows users to create

transactions whose outputs can only be spent in the future.

OP MULTISIGVERIFY allows the creation of transactions

which need multiple signatures. In our case, the receiver

creates a deposit which is locked till a future time t. The funds

of the deposit can be transferred only if both the signatures of

sender and the receiver are submitted before the time t. After

time t, the unspent funds are transferred back to the receiver.

Embedding such instructions into the funds is commonly

referred to as a smart contract. Our smart contract automates

the claim-or-refund functionality. The funds are transferred

either when the time of the agreement expires or when the

signatures of both sender and receiver are available.
The scriptPubKey that receiver uses in the contract is

IF
OP CHECKLOCKTIMEVERIFY OP DROP
pkR OP CHECKSIGVERIFY
ELSE
OP 2 pkR pkS OP 2 OP CHECKMULTISIGVERIFY
ENDIF

IV. COMMITTED RECEIVER OBLIVIOUS TRANSFER

Oblivious Transfer is used to transfer one message Mb

where b ∈ {0, 1} of the two messages M0 and M1 from sender

to the receiver with bit b. However in our APB protocol, we

further require the bit b to be a bit of the signing-key of the

receiver. With a simple OT 2
1 , the sender can not be sure if

that is the case.
To overcome this, we propose the committed receiver oblivi-

ous transfer (CROT) primitive. In CROT , the receiver forwards

a non-interactive zero knowledge (NIZK) proof of knowledge

to prove that the bit inputs from the receiver are in fact bits

of the signing key. The functionality of the protocol CROT is

presented in the Figure 2. We depict the construction of the

protocol in Figure 3.
Theorem 1: The CROT protocol securely implements the

ideal functionality FCROT under the following assumptions:

FCROT interacts with sender S and receiver R.
- R generates the key pair (sk, pk) and forwards the bits

si ∈ {0, 1}, i ∈ [0, · · · , κ− 1] and the κ bit signing-key

sk to FCROT which stores them.

- S forwards the messages Mi,0,Mi,1; i ∈ [0, · · · , κ−1]
to FCROT which stores them.

- After receiving the inputs from both S and R, FCROT

verifies if the bits of sk are the bits si and (pk, sk) are

a key pair. If the verification succeeds, it forwards the

messages Mi,si , i ∈ [0, · · · , κ− 1] to the receiver, else,

aborts.

Fig. 2: Ideal Functionality FCROT of CROT

Corruption Model: static corruption

Hybrid Functionalities: H is modeled as a random oracle and

authenticated channels between users are assumed.

Computational Assumptions: G is Gap-DH. The symmetric

encryption used is non-committing and robust.

Construction

The protocol construction for the ideal functionality FCROT

as given is the Figure 2 is presented here. The sender has

messages Mi,j for 0 ≤ i ≤ κ−1 and j ∈ {0, 1}. The receiver

has a signing key sk (si for 0 ≤ i ≤ κ − 1 are the bits of

sk). Given a multiplicative group G and its generator g, the

sender initially chooses a random value a ← Zq and forwards

h = ga to the receiver. This would be the Setup phase. In the

next Commit and Prove phase, the receiver chooses random

ri ←R Zq and computes ci = grihsi for 0 ≤ i ≤ κ − 1.

The ci values are forwarded to the sender as commitments to

the bits si. The receiver also forwards r =
∑κ−1

i=0 2iri to the

sender. Along with these, for 0 ≤ i ≤ κ − 1, the receiver

forwards non-interactive zero knowledge (NIZK) proofs of

knowledge of exponents ri and si such that ci = gri+asi .

Each of these NIZK proofs is realized using the standard Fiat-

Shamir transformation [20] of an interactive sigma protocol for

Pedersen commitments in the random oracle model. Following

the formal symbolic notation introduced by Camenisch and

Stadler [21], each proof is depicted as PoK{(ri, si)|grihsi} in

Figure 3. This phase is used by the receiver to prove that the

bits si used for the transfer are indeed the bits of the signing

key sk. The sender verifies if c = grpka for the computed

c =
∏κ−1

i=0 c
(2i)
i . He also verifies the NIZK proof. If both

the verifications succeed, he proceeds with the protocol, else,

aborts. The verification would also fail if (pk, sk) are not a

key pair.

After successful verification the sender computes the keys

ki,j = H((ci · h−j)a) for each 0 ≤ i ≤ κ− 1 and j ∈ {0, 1}.

The sender verifies if the receiver computed the keys using

the verification step similar to Verified Simplest OT [16]. He

forwards the challenges pi = H(H(ki,0)) ⊕ H(H(ki,1)) for

each i and receives the responses in the form of p′i and the

sender verifies if p′i = H(H(ki,0)). The keys ki,j are used

to encrypt messages Mi,j respectively to obtain the cipher

343



texts Ci,j . The cipher texts Ci,j are forwarded to the receiver

who attempts to decrypt the blocks Ci,si using the keys ki,si
finishing the Transfer phase. The receiver can not compute

the keys ki,1−si (follows from Lemma 1 of [17]) and so can

not decrypt Ci,1−si . One can observe that the protocol does

not enforce the receiver to use “bits”, if the receiver uses any

other values other than bits in CROT , the receiver receives

encryptions which can not be decrypted.

The model for CROT includes static corruption of par-

ties, modelling H as random oracle and group G being

Gap-DH [18] while the encryption used is symmetric, non-

committing and robust [17].

V. THE APB PROTOCOL

Here, we detail the steps of the APB protocol which uses

CROT . The watermarking and the OT 2
1 protocol are the off-

chain cryptographic components while the smart-contract and

the deposit are the on-chain parts.

1) NetworkSetup: The sender and receiver setup their

Bitcoin identities by generating secret key-public key pairs;

the sender has the document M .

2) DepositSetup(sk, t, V alue): A time-locked bitcoin de-

posit is created by the receiver with the signing key sk for

a time t and for a amount of V alue. The deposit is a 2-of-2

multisig deposit requiring the secret keys of both the sender

and the receiver to transfer the funds.

3) WaterMark(M): The document M is broken into κ
blocks Mi, 0 ≤ i ≤ κ− 1 for a κ-bit long sk and each block

Mi is watermarked to generate two versions Mi,0,Mi,1. Any

watermarking scheme which satisfies the previously mentioned

properties (refer section III) can be used.

4) CROT(Mi,0,Mi,1, sk): The sender watermarks the doc-

ument blocks to obtain Mi,j and inputs them to the CROT
protocol. The receiver after proving in zero knowledge that

the input to the protocol is her signing key sk, receives the

encrypted blocks. The appropriately decrypted symmetrically

encrypted blocks are then joined together to form the receiver’s

version of the document Msk.

5) Penalize(Msk, skS): Upon revelation of the document,

the receiver’s secret key sk is extracted from the document

Msk and is used with the sender’s secret key skS to transfer

the deposited funds to the sender to penalize the receiver.

Utilizing Bitcoin. Before the APB protocol begins, after

the two parties agree on the APB process, the sender shares

his/her public key pkS with the receiver to create a deposit.

The sender will assert that the receiver creates a transaction

TX that is valid for a mutually agreed upon time t, and can

be redeemed by the sender instantly with the signing keys

of the sender (skS) and the receiver(skR). Here, the deposit

should hold the funds equal to an agreed upon value V alue.

VerifyDeposit(TX) at the sender verifies the above mentioned

criterion. This algorithm receives the hash of the transaction

as an input and verifies that the transaction meets the above

mentioned criteria, i.e. it is a valid deposit that directs V alue
to the sender if the sender has both the signing/private keys.

Earlier versions of Bitcoin allowed senders to broadcast time

locked transactions and these transactions would be in the

unverified transactions pool until the time lock expired or

an unlocking scriptSig was provided by the spender of TX .

However, current (as of February 2019) Bitcoin transaction

does not permit nodes to propagate transactions that have

an active time lock. Therefore, the receiver sends TX over

any secure channel so that the sender can verify and sign

the transaction. Once the document becomes public, we are

assured from the watermarking scheme that the leaked copy

of the document will have the receiver’s signing key. Using

the extraction algorithm Extract(M , Msk) the sender can

reconstruct the signing key sk. Once the sender has sk, he can

sign the transaction TX with the Sign(TX , sk) and broadcast

the signed transaction directing the funds in TX to his Bitcoin

address.

Analysis. Figure 4 presents the ideal functionality FAPB

for APB, while Theorem 2 proves its security. Here we

show that the functionality achieves the desirable properties

discussed in Section II. The properties of sender and receiver

privacy are trivially satisfied by the functionality as it does not

reveal any information except transferring the corresponding

watermarked blocks to the receiver. If the receiver discloses

the document, the sender can extract the embedded watermark

bits and hence the signing key of the receiver, thus satisfying

the revealing property. If the sender tries to falsely accuse the

receiver by revealing the document in any form, the receiver

does not lose the deposit as the sender does not have the

receiver’s key without disclosure, this achieves the sender

integrity property. Though the penalization is shown as a step

of APB, as it takes place outside of the transfer mechanism

after the data breach in a non-interactive way, it is not included

in the ideal functionality of the APB protocol.

Theorem 2: The APB protocol securely implements the ideal

functionality FAPB under the following assumptions:

Corruption Model: static corruption

Hybrid Functionalities: H is modeled as a random oracle and

authenticated channels between users are assumed.

Computational Assumptions: CDH and DDH are assumed

to be hard in G, G is Gap-DH. The symmetric encryption used

is non-committing and robust.

Proof Outline of CROT. The security of the protocol directly

follows from the fact that the OT 2
1 protocol [16] is UC-

secure under Gap-DH and ZK proof of knowledge of exponent

forwarded by the receiver does not leak any information

regarding si to the sender. Hence CROT is UC-secure. Since

APB uses only CROT for the transfer, APB is UC-secure.

A. Discussion

Multiple Receivers: In a scenario involving multiple re-

ceivers of the same document, the sender can embed the

signing key of a each receiver multiple times into each

receiver’s version of the document. He can do so by dividing

the document into higher number of parts compared to the

receiver’s key length. This ensures that, in case of collusion

and each receiver contributing a small portion of his document

344



Sender Receiver
Multiplicative (Public) Group G, generator g

pk = gsk sk ∈ {0, 1}κ
For all i : 0 ≤ i ≤ κ− 1

Message blocks: Mi,0 and Mi,1 Bit decomposition of sk: si
Challenge

a ←R Zq
h=ga−−−→

Commit and Prove
For all i : 0 ≤ i ≤ κ− 1

ri ←R Zq

r =
∑κ−1

i=0 2iri
ci = grihsi

gr,ci,PoK{(ri,si)|grihsi}←−−−−−−−−−−−−−−−
c =

∏κ−1
i=0 c

(2i)
i

Abort if c �= (grpka) or

if verfication of NIZK fails

Transfer
For all i : 0 ≤ i ≤ κ− 1 and j ∈ {0, 1}

ki,j = H((ci · h−j)a) ki,si = H(hri)

pi = H(H(ki,0))⊕H(H(ki,1))
pi−→ p′i = H(ki,si)⊕ pisi

Verify p′i = H(H(ki,0))
p′
i←−

Ci,j = Eki,j
(Mi,j)

Ci,j−−→ Decrypt Ci,si using ki,si

Fig. 3: Committed Receiver Oblivious Transfer (CROT) Protocol

FAPB interacts with sender S and receiver R.
- The receiver R generates the key pair (sk, pk), for-

wards the bits si ∈ {0, 1}, i ∈ [0, · · · , κ − 1] of the

κ bit signing-key sk and sk to the functionality which

stores the received input.

- The sender S forwards the watermarked document

blocks Mi,0,Mi,1 ∈ {0, 1}∗, i ∈ [0, · · · , γ − 1] to the

functionality which stores the received input.

- The functionality verifies if the bits of sk are the bits

si, if the verification succeeds, it forwards the message

blocks Mi,si to R, else, it aborts.

Fig. 4: Ideal Functionality FAPB of APB

while colluding, the sender can still extract considerable

amounts of signing keys from the revealed document.

Fairness: The receiver deposits the bitcoins before the com-

mencement of the protocol and so, if the document transfer

does not go through, his funds will be locked till the end of the

deposit time period. This is not ‘fair’ for the receiver. However,

in a more realistic setting, in such a scenario the parties would

just re-run the protocol and transfer the document.

VI. RELATED WORK AND FURTHER DISCUSSION

We are unaware of any academic research into

cryptographically-enforceable automated penalization of

a data breach. A closely related subject, one that is well-

studied, is traitor tracing [22], [23]. In a traitor tracing scheme,

decryption boxes with unique private keys (for a common

public key) are distributed to a number of subscribers. If a

device is reverse engineered and the key is leaked, the device

it came from can be determined by the service provider. A

recent proposal by Kiayias and Tang [24] adds a Bitcoin

smart contract to hold a bond that is recoverable. This body

of work has limited applicability to our APB problem for

three main reasons: (1) we want to detect leaked documents

that have been meaningfully written, not keys which are

arbitrary, random values; (2) we want the entity distributing

the values to not learn the value until it is leaked; and (3)

unlike in the smart contract variant [24], we cannot have

the provider provision the signing key for use by both

parties. For these reasons, we do not build our solution from

traitor tracing schemes. In another line of work, Nasir et
al. build a seller-buyer watermarking scheme in [25] where

the watermark embedded in the document is not known to

seller/sender but can identify the buyer once the document

is distributed. The main drawback of their scheme is the

requirement of a third trusted authority for providing the

watermark for the buyer, also the sender needs to go through

the legal procedure and prove to the judge that the buyer is

indeed the one who leaked and the penalization is through

court system. In [26] Andre et al. propose a zero-knowledge

proof based protocol for providing proof of ownership of the

345



document but does not involve proving that a certain party is

the leaker or a way to penalize the leak.
Using bitcoin contracts for collatorizing the fair and correct

execution of cryptographic protocols has been explored ear-

lier [11], [12], [27]. Our bitcoin contract is a standard claim-

or-refund transaction common in this literature. The main

difference is that one party must prove that the singing key

used in this transaction is consistent with the one taken as

input to a private computation.

VII. CONCLUSION

In this work, we devise the APB protocol that disincen-

tives intentional or unintentional multimedia breach through

automated penalization. Our aim here is to raise the bar for

the data receivers/custodians by introducing a complementary

security mechanism that is inexpensive, automated and is not

restricted by the geo-political boundaries.
To realize our protocol, we have employed robust water-

marking, a claim-of-refund smart contract and a oblivious

transfer protocol. Our protocol ensures that the sender can

extract the signing key of the receiver from the disclosed

document while ensuring that the key used by the receiver

for the deposit is same as the one used for obtaining the

document.

REFERENCES

[1] “Statista. annual number of data breaches and exposed records in the
united states from 2005 to 2018,” www.statista.com/statistics/273550/
data-breaches-recorded-in-the-united-states-by-number-of-breaches-
and-records-exposed/.

[2] “Healthcare it news. 128, 000 records breached in ransomware
attack on arkansas oral facial surgery centre (2017),”
https://www.healthcareitnews.com/news/ransomware-attack-breaches-
128000-patient-records-arkansas-provider.

[3] “Healthcare informatics. 4.4m patient records breached in q3 2018, pro-
tenus finds,” https://www.hcinnovationgroup.com/cybersecurity/news/
13030867/44m-patient-records-breached-in-q3-2018-protenus-finds.

[4] “Man in the cloud (mitc) attacks,” https://www.imperva.com/docs/HII
Man In The Cloud Attacks.pdf, 2015.

[5] T. Floyd, M. Grieco, and E. F. Reid, “Mining hospital data breach
records: Cyber threats to u.s. hospitals,” in 2016 IEEE Conference on
Intelligence and Security Informatics (ISI), Sept 2016, pp. 43–48.

[6] “Data protection and breach,” https://otalliance.org/system/files/files/
resource/documents/dpd 2015 guide.pdf, 2015.

[7] “Data breaches,” https://www.privacyrights.org/data-breaches?title=
&breach type%5B%5D=267.

[8] “Nsw data and information custodianship policy,” https:
//www.finance.nsw.gov.au/ict/sites/default/files/NSW%20Data%20and%
20Information%20Custodianship%20Polic%20v1-0.pdf.

[9] T. J. Cunningham, B. Huffman, and C. M. Salmon, “Settlement trends in
data breach litigation,” https://www.financierworldwide.com/settlement-
trends-in-data-breach-litigation, 2014.

[10] C. M. Bast, “At what price silence: are confidentiality agreements
enforceable?” William Mitchell Law Review, vol. 25, no. 2, 1999.

[11] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in ICC, 2014.

[12] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on bitcoin,” in IEEE Symposium on
Security and Privacy, 2014.

[13] T. Ruffing, A. Kate, and D. Schröder, “Liar, liar, coins on fire!:
Penalizing equivocation by loss of bitcoins,” in ACM CCS, 2015.

[14] “Ethereum Website,” https://www.ethereum.org/.
[15] A. Adelsbach, S. Katzenbeisser, and A. Sadeghi, “A computational

model for watermark robustness,” in 8th International Workshop Infor-
mation Hiding (IH), 2006, pp. 145–160.

[16] J. Doerner, Y. Kondi, E. Lee, and a. shelat, “Secure two-party
threshold ecdsa from ecdsa assumptions,” in 2018 IEEE Symposium
on Security and Privacy (SP), 2018, pp. 595–612. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/SP.2018.00036

[17] T. Chou and C. Orlandi, “The simplest protocol for oblivious transfer,”
in LATINCRYPT, 2015.

[18] Z. A. Genc, V. Iovino, and A. Rial, “The simplest protocol for oblivious
transfer revisited.” [Online]. Available: https://eprint.iacr.org/2017/370.
pdf

[19] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[20] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to

identification and signature problems,” in Proceedings on Advances in
cryptology—CRYPTO ’86, 1987, pp. 186–194.

[21] J. Camenisch and M. Stadler, “Proof systems for general statements
about discrete logarithms,” Technical report/Dept. of Computer Science,
ETH Zürich, vol. 260, 1997.

[22] B. Chor, A. Fiat, and M. Naor, “Tracing traitors,” in CRYPTO, 1994.
[23] D. Boneh and M. Franklin, “An efficient public key traitor tracing

scheme,” in CRYPTO, 1999.
[24] A. Kiayias and Q. Tang, “Traitor deterring schemes: Using bitcoin as

collateral for digital content,” in ACM CCS, 2015.
[25] N. Memon and P. W. Wong, “A buyer-seller watermarking protocol,”

IEEE Transactions on Image Processing, vol. 10, no. 4, pp. 643–649,
April 2001.

[26] A. Adelsbach and A.-R. Sadeghi, “Zero-knowledge watermark detection
and proof of ownership,” in Information Hiding, I. S. Moskowitz, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 273–288.

[27] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in IEEE Symposium on Security and Privacy, 2016.

346


