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Abstract
Data-as-a-service (DaaS) is a cloud computing service that emerged as a viable option to
businesses and individuals for outsourcing and sharing their collected data with other par-
ties. Although the cloud computing paradigm provides great flexibility to consumers with
respect to computation and storage capabilities, it imposes serious concerns about the con-
fidentiality of the outsourced data as well as the privacy of the individuals referenced in the
data. In this paper we formulate and address the problem of querying encrypted data in a
cloud environment such that query processing is confidential and the result is differentially
private. We propose a framework where the data provider uploads an encrypted index of her
anonymized data to a DaaS service provider that is responsible for answering range count
queries from authorized data miners for the purpose of data mining. To satisfy the confi-
dentiality requirement, we leverage attribute-based encryption to construct a secure kd-tree
index over the differentially private data for fast access.We also utilize the exponential variant
of the ElGamal cryptosystem to efficiently perform homomorphic operations on encrypted
data. Experiments on real-life data demonstrate that our proposed framework preserves data
utility, can efficiently answer range queries, and is scalable with increasing data size.

Keywords Cloud computing · Data outsourcing · Search on encrypted data · Differential
privacy

1 Introduction

Cloud computing [44] is a new computing paradigm that enables organizations to have access
to a large-scale computation and storage at an affordable price. Data-as-a-service (DaaS) is
one of the cloud computing services that allow hosting andmanaging large-scale databases in
the cloud on behalf of the data owner. DaaS is a compelling service for organizations, as they
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no longer need to invest in hardware, software and operational overheads. However, despite
all these benefits, organizations are reluctant to adopt DaaS model, as it requires outsourcing
the data to an untrusted cloud service provider that may cause data breaches.

In recent years, there has been a considerable effort to ensure data confidentiality and
integrity of outsourced databases. Several research proposals suggest encrypting the data
before moving it to the cloud [30,48]. While encryption can provide data confidentiality, it is
less effective in deterring inference attacks. This reality demands newprivacy-enhancing tech-
nologies that can simultaneously provide data confidentiality and prevent inference attacks
due to aggregate query answering.

Privacy-preserving data publishing (PPDP) is the process of anonymizing person-specific
information for the purpose of protecting individuals’ privacy while maintaining an effective
level of data utility for data mining. Different PPDP privacy models provide different types
of privacy protection [28]. Differential privacy [25] is a recently proposed privacy model that
provides a provable privacy guarantee. Differential privacy is a rigorous privacy model that
makes no assumption about an adversary’s background knowledge. A differentially private
mechanism ensures that the probability of any output (released data) is equally likely from
all nearly identical input datasets and thus guarantees that all outputs are insensitive to any
individual’s data.

In this paper, we propose a cloud-based query processing framework that simultaneously
preserves the confidentiality of the data and the query requests, while providing differential
privacy guarantee on the query results to protect against inference attacks. Let us consider
the following real-life scenario. Population Data BC (PopData)1 is a non-profit organization
(data bank) responsible (among other things) for storing andmanaging patient-specific health
data received from several hospitals, health organizations and government agencies in the
Province of British Colombia, Canada. PopData utilizes explicit identifiers to integrate the
data, and then de-identifies the integrated data by separating the explicit identifiers from
the rest of the data contents. Data miners who are interested in querying the data initially
sign a non-identifiability agreement to prevent them from releasing research data that can
be used to re-identify individuals. When PopData receives a data access request, it first
authenticates the data miner, verifies that she is working on an approved research project,
and then executes the query on the de-identified data and returns the result back to the data
miner. Similar organizations can be found in other countries, e.g., the National Statistical
Service2 in Australia.

A major concern in this scenario is data privacy. Although the data is de-identified,
data miners can still perform (or accidentally release a research result that can lead to)
record/attribute linkage attacks and re-identification of individuals, as was shown in the cases
of AOL [3] and Netflix [47]. On the other hand, to minimize the workload on PopData, cloud
services can be used to store,manage, and answer queries on the integrated data.However, this
raises two other concerns. One concern is data confidentiality, where the outsourced patient-
specific data must be stored in a protected way to prevent the cloud from answering queries
fromunauthorized dataminers, and to protect against potentialmulti-tenancy problems due to
the sharing of services, resources, and physical infrastructure between multiple independent
tenants on the cloud [23]. Another concern is query confidentiality, where the cloud should
be able to execute query requests from authorized data miners without the ability to know
what attributes and attribute values are specified in each query.

1 PopData: https://www.popdata.bc.ca/.
2 Statistical Data Integration Involving Commonwealth Data: http://statistical-data-integration.govspace.gov.
au/.

123

https://www.popdata.bc.ca/
http://statistical-data-integration.govspace.gov.au/
http://statistical-data-integration.govspace.gov.au/


SecDM: privacy-preserving data outsourcing framework with…

Confidential Query 
Processing 

Patient-specific Integrated and Anonymized Data

Age
[1-30)
[30-55)
[55-82)
[30-55)

...

Sex
Any_Sex
Any_Sex
Any_Sex
Any_Sex

...

Surgery
Coronary Artery

Plastic
Valve Repair

Urology
...

ID
1
2
3
4
...

Count
2
11
4
7
...

Public 
Cloud

Authenticated Data Miner

Query q: “number of patients older than 15 
years who had heart related surgery?”

Hospital

Health Centre

Authentication

Fig. 1 PRIST: a privacy-preserving framework for software testing using differential privacy

As shown by [8], count queries can be quite useful for data mining and statistical analysis
applications where miners focus on extracting new trends and patterns from the overall data
and are less interested in particular records.

Figure 1 illustrates the overall process of our proposed framework. Each data owner
(e.g., hospital, health center) submits its raw data to the data bank (data provider). The data
bank first integrates all data together, and then applies a PPDP privacy model on the inte-
grated data such that explicit identifiers of record owners are removed, while other attributes
(including sensitive attributes) are anonymized and retained for data analysis. Next, the data
bank encrypts the anonymized data and uploads it to the service provider (public cloud).
Data miners authenticate themselves to the data bank and then submit their encrypted count
queries to the cloud. The cloud securely processes each query, homomorphically computes
the exact noisy count, and then sends the encrypted result back to the data miner. The pro-
posed framework, named SecDM, achieves data privacy by supporting any privacy algorithm
whose output is a contingency table data. Attribute-based Encryption (ABE) and ElGamal
schemes are used to achieve data and query confidentiality.We analyze in Sect. 4.3 the benefit
of outsourcing the data to a service provider as compared to having the data bank handle
the user queries directly and show that the processing overhead on the data bank is almost
10 times less than the overhead on the service provider. While our framework protects the
confidentiality of individual query (data access), we provide a detailed security analysis in
Sect. 1.

The intuition of our solution is to generate a kd-tree index for efficient traversal and
secure access on the anonymized data, where the index tree is encrypted using attribute-
based encryption and stored on the public cloud. When a data miner desires to query the
outsourced data, she sends her proof of identity to the data provider with her query and
receives an encrypted version of her query, namely system query, which she sends to the
cloud for processing. The cloud uses the system query to traverse the encrypted kd-tree index
and securely compute the total count representing the privacy-preserving answer to the query.
The cloud then sends the answer back to the data miner, who in turn decrypts the encrypted
results using a decryption key provided originally by the data provider. Our framework
protects the confidentiality of each individual query by keeping its predicates hidden from
the cloud. However, it does not hide the search pattern of the queries. We provide formal
definition of framework properties as well as detailed security analysis in Sect. 1.
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The contributions of this paper can be summarized as follows:
Contribution 1We propose SecDM, a comprehensive privacy-preserving framework for

query processing in a cloud computing environment. SecDMmaintains the privacy and utility
properties of the outsourced data while simultaneously ensuring data confidentiality, query
confidentiality, and privacy-preserving results. Previous work [4,33,53,57,58] satisfies only
a subset of the aforementioned security features. We refer the reader to Sect. 2 for a detailed
comparison.

Contribution 2 To enable efficient data access on the cloud while maintaining data and
query confidentiality, we propose an algorithm for constructing an encrypted kd-tree index
while utilizing attribute-based encryption in order to support range predicates on numerical
attributes. We demonstrate the efficiency of our solution by showing that SecDM has linear
time complexity w.r.t. the number of attributes, and it is sub-linear w.r.t. the data size on
query processing. Extensive experiments on real-life data further confirm these properties.

Contribution 3Most existingwork on the problemof data outsourcing in cloud computing
environments either requires the query issuer to have prior knowledge about the data and
subsequently requires storage and communication overhead [57], or yields results that require
postprocessing on the query issuer’s side [36], or both [39]. In contrast, data miners in our
proposed framework are considered “lightweight clients” as they are not required to have or
store any information about the data, nor are they required to perform postprocessing on the
results (except for decrypting the results). The communication complexity with the cloud is
constant with respect to the size of the dataset and the query type.

2 Related work

In this section, we review the literature that examines several areas related to our work.
Table 1 summarizes the features of the representative approaches, including our proposed
solutions.

2.1 Privacy-preserving data publishing

One related area is privacy-preserving data publishing (PPDP) [28], where data is published
in such a way that useful information can be obtained from the published data while data pri-
vacy is preserved. A common PPDP approach is anonymization. Several privacymodels were
proposed in the literature for providing different types of privacy protection. For example, the
(α, k)-anonymity model [62] applies generalization and suppression techniques to protect
against record and attribute linkages. The ε-differential privacy model [25] aims at protecting
against table linkage and probabilistic attacks by ensuring that the probability distribution
on the published data is the same regardless of whether or not an individual record exists
in the data. Mohammed et al. [46] propose a generalization-based anonymization algorithm
in a non-interactive setting for releasing differentially private records for data mining. Chen
et al. [16] propose a method for anonymizing high-dimensional data and releasing synthetic
dataset satisfying differential privacy using sampling-based framework to identify attributes’
dependencies. Cormode et al. [18] propose a framework for using spatial data structures to
provide a differentially private description of the data distribution. Xiao et al. [64] propose
another framework that uses kd-tree-based partitioning for differentially private histogram
release. These frameworks support range queries while providing privacy guarantee; how-
ever, these techniques are not suitable for the outsourcing scenario as they provide no data
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confidentiality against the cloud service provider. Our work assumes that the outsourced data
is a data table that is anonymized to satisfy a privacy requirement. To maximize the data
utility for classification analysis, we utilize the anonymization approach in [46].

2.2 Confidentiality in data outsourcing

Another area related to our work is confidentiality in data outsourcing, where data is stored
and managed by one or more untrusted parties that are different from the data owner. Queries
are executed on the data while keeping the data confidential and without revealing infor-
mation about the queries. A commonly used mechanism for ensuring data confidentiality is
encryption. Some approaches propose to process queries over encrypted data directly. How-
ever, such approaches do not provide a good balance between data confidentiality and query
execution. For example, methods in [36,38] attach range labels to the encrypted data, thus
revealing the underlying distributions of the data. Other methods depend on order-preserving
encryption [1,26]; however, these methods reveal the data order and are subject to inference
and statistical attacks. Homomorphic encryption, on the other hand, is a promising public
cryptosystem that allows query execution on encrypted data [30,32]; however, its high com-
putation cost makes it prohibitive in practice. The authors in [20] propose to store encrypted
links to the data queries in Blockchain, and use smart contracts to retrieve the data. In this
paper, we employ the exponential variation of ElGamal [19] encryption scheme in one area
of our solution by taking advantage of its additive homomorphism property. We show that
this scheme is efficiently employed because the encrypted message is small enough for the
scheme to remain practical.

Instead of processing queries directly over encrypted data, some approaches propose
using indexing structures for fast data access and efficient query execution [31,54,55]. Some
indexing schemes have constraints on the type of queries they support. For example, hash-
based indexing [21] and privacy homomorphism [37] only support equality queries, whereas
bucket-based indexing [36] and character-oriented indexing [59,60] support equality queries
as well as partially supporting range queries. To support both equality queries and range
queries, a category of approaches propose using disk-based indexes such as B-tree [5] and
B+-tree [17] and spatial access indexes such as kd-tree [6] and R-tree [35]. Our work fits in
this category because we utilize an encrypted kd-tree index for efficient and secure traversal.
Wang et al. [57] propose a framework based on B+-tree index for query processing on rela-
tional data in the cloud. However, in order to protect data confidentiality against the cloud,
the proposed solution generates a superset of the result and requires the client (querying user)
to perform predicates evaluation in order to compute the final result. Hu et al. [39] propose a
framework based on R-tree index for secure data access and processing of k-nearest-neighbor
(kNN) similarity queries. However, the proposed approach partitions the R-tree index con-
structed over the outsourced data into two indexes, one is hosted by the cloud and the other
is hosted by the client. In addition, a high communication bandwidth is required to achieve
access confidentiality. Recently, Wang and Ravishankar [56] proposed a framework for per-
forming half-space range queries using an ̂R-tree index that is encrypted using Asymmetric
Scalar-product Preserving Encryption (ASPE) scheme [63]. Their method ensures data confi-
dentiality and requires low communication and storage overhead on the client side. However,
it does not provide a privacy guarantee, nor does it provide full confidential query processing
because it leaks information on the ordering of the minimum bounding box of the leaf nodes
and requires result postprocessing because it introduces false positives. Barouti et al. [4]
proposed a protocol for secure storage of patient health records on the cloud, while allow-
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ing health organizations to securely query the data. The proposed protocol, however, does
not provide privacy guarantees on the query results, while requiring high communication
overhead on the client side.

2.3 Search on encrypted data

Searchable encryption (SE) [15,24,40,52] is a closely related line of work that supports
secure searching on encrypted data. SE schemes (except for [52]) enable the data provider
to generate a searchable encrypted index over a set of keywords. Most of these indexes,
however, leak information about the relation between the keywords and the underlying data,
the search pattern, and the access pattern [14]. In contrast, our proposed framework reveals
only the search pattern of the queries to the cloud. Functional encryption (FE) [12] is another
related line of work that supports searching on encrypted data. It includes identity-based
encryption [10], attribute-based encryption [7], and predicate encryption [13]. We choose
cipher-policy attribute-based encryption (CP-ABE) to construct our searchable encrypted
index since CP-ABE supports fine-grained access control that can be utilized to handle not
only keywords but also numerical ranges. In [65], the authors propose a PIR solution based on
Paillier encryption scheme for privately retrieving a cell from an encrypted data warehouse.
That is, it allows users to perform OLAP operations without revealing to the server which
operation is performed and which cell is being retrieved.

Unlike the aforementioned approaches, our proposed solution ensures data and query
confidentiality and privacy-preserving results while assuming that the client has no prior
knowledge about the data being queried and its structure. No further interaction is required
between the cloud and the client once the latter has submitted her query to the cloud, and no
local refinement is required by the client on the final result. Table 1 summarizes the features
of the representative approaches, including our proposed solutions.

3 Problem formulation

In this section, we formally define the research problem. First, we present an overview of
the problem of confidential query processing, with privacy guarantee on outsourced data in
the cloud in Sect. 3.1. Next, we define the input components in Sect. 3.2. We then describe
the trust and adversarial model in Sect. 3.3. Finally, we present the problem statement in
Sect. 3.4.

3.1 Problem overview

In this paper, we examine a cloud computingmodel consisting of three parties: data provider,
data miner, and service provider. The data provider, for example, represents a data bank
that owns an integrated patient-specific database. The data miner represents a user who is
interested in querying the data for the purpose of performing analytical data mining activities
such as classification analysis. The service provider is a public (untrusted) party that facilitates
access to IT resources, i.e., storage and computational services.

The data provider desires to make its data available to authorized data miners. Due to its
limited resources, the data provider outsources the database to a service provider capable
of handling the responsibility of answering count queries from data miners. To prevent
the disclosure of patients’ sensitive information, the data provider anonymizes its data and
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generates a set of records that satisfy ε-differential privacy. Even though the outsourced data
is anonymized, the data provider wants to protect the data against the service provider so it
cannot answer queries on the data from untrusted (unauthorized) data miners. The service
provider, however, should be able to process count queries from authorized data miners
confidentially and return results that provide a certain privacy guarantee.

3.2 System inputs

In this section, we give a formal definition of the input components, namely differentially
private data anduser count queries.Without loss of generality,we assume that the input data is
anonymized using an ε-differential privacymodel [25], although our approach supports other
privacymodels that produce contingency-like tables based on generalization and suppression.
We choose ε-differential privacy because it provides a strong privacy guarantee while being
insensitive to any specific record. We first describe how to generate ε-differentially private
records from a relational data, then we explain how to transform the data using taxonomy
trees, and finally we define the types of count queries the user can submit.

3.2.1 Differentially private data

In this section, we review how a data provider can generate ε-differentially private records.
We utilize the differentially private anonymization algorithm (DiffGen) [46] to maximize the
data utility for classification analysis. Suppose a data provider owns an integrated patient-
specific data table D = {AI , Apr , Acls}, where AI is an explicit identifier attribute such as
SSN or Name for explicitly identifying individuals that will not be used for generating the
ε-differentially private data; Acls is a class attribute that contains the class value; and Apr

is a set of k predictor attributes whose values are used to predict the class attribute Acls . We
require the class attribute Acls to be categorical, whereas the predictor attributes in Apr are
required to be either categorical or numerical. Furthermore, we assume that for each predictor
attribute Ai ∈ Apr a taxonomy tree TAi is used in order to specify the hierarchy among the

Any_Job

Professional Artist

[18-65)

[18-45) [45-65)

AgeJob
[18-99)

[18-40) [40-99)

Salary
Any_Country

USA Canada

Country

Canada 30KEngineer
USA 45KLawyer

USA 75KLawyer
Canada 60KDancer
USA 45KWriter

Canada 75KWriter

30
55

45
18
30
45

USA 45KEngineer 30

Canada 45KDancer 65

Country SalaryJob Age

3
2

4
5
6
7

1

8

PID

Coronary Artery
Valve Repair

Plastic
Coronary Artery

Urology
Valve Repair

Plastic

Valve Repair

Surgery

Fig. 2 A raw data table D and its taxonomy trees
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domain values of Ai . Figure 2 shows a raw data table D with four attributes, namelyCountry,
Job, Age, and Salary and the taxonomy tree for each attribute.

The data provider’s objective is to generate an anonymized version D̂ = { Â pr , NCount}
of the data table D, where Â pr is the set of k generalized predictor attributes, and NCount
is the noisy count of each record in D̂. The objective of the data miner is to build a classifier
to accurately predict the class attribute Acls by submitting count queries on the generalized
predictor attributes Â pr .

Although we focused in this paper on contingency-like data tables, our framework can be
extended to handle general type of differentially private data. In this case, a preprocessing
step must take place before the secure index tree is generated. The preprocessing step would
involve applying a top-down specialization approach (similar to DiffGen) and use utility
measure functions (e.g., information gain, Max, Gini) to guide the specialization. No privacy
budget would be consumed in this step, as the data is already differentially private. According
to [43], any processing on a differentially private data does not violate its privacy.

3.2.2 Input data transformation

We simplify the representation of the ε-differentially private records D̂ = { Â pr , NCount}
by mapping the values of each attribute to their integer identifiers from the corresponding
attribute’s taxonomy tree.

Numerical attributesThedomain of each numerical attribute Âi ∈ Â pr consists of a set of
ranges that are pair-wise disjoint and can be represented as a continuous and ordered sequence
of ranges. We define an order-preserving identification function I Dop that assigns an integer
identifier to each range r = [rmin, rmax ] such that for any two ranges r j and rl , if rmax

j < rmin
l ,

then I Dop(r j ) < I Dop(rl). For example, if the domain of the generalized attribute ˆAge is
�( ˆAge) = 〈[18, 45), [45, 65)〉, then I Dop([18, 45)) = 1 and I Dop([45, 65)) = 2.

Categorical attributes The domain of each categorical attribute Âi ∈ Â pr consists of the
set of values Cut(TAi ). We define a taxonomy tree identification function I Dt such that for
any two nodes vi , v j : v j �= vi , if vi is a parent of v j , then I Dt (vi ) < I Dt (v j ). If vi is the
root node, then I Dt (vi ) = 1. Figure 3 illustrates the taxonomy tree TJob for attribute Job,
where each node is assigned an identification value.

Having defined the mapping functions I Dop and I Dt , we now transform the ε-
differentially private records D̂ by mapping the values in the domain of each attribute to their
identifiers. That is, for each numerical attribute Âi ∈ Â pr , we map each range r ∈ �( Âi )

to its corresponding identification value I Dop(r). Similarly, for each categorical attribute
Âi ∈ Â pr , we map each value in v ∈ �( Âi ) to its identification value from the taxonomy
tree I Dt (v). Table 3 shows the differentially private data D̂ after the transformation.

Any_Job (id=1)

Professional (id=2)

Lawyer (id=5)Engineer (id=4) Writer (id=8)Dancer (id=6) Singer (id=7)

Civil (id=10)Software (id=9) Electrical (id=11)

Solution Cut

Job

Artist (id=3)

Fig. 3 Taxonomy tree TJob for attribute Job
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3.2.3 User count queries

The goal of the data miners is to build a classifier based on the noisy count of a query over the
generalized attributes Â pr . Therefore, they submit count queries to be processed on the ε-
differentially private data D̂ and expect to receive a noisy count as a result to each submitted
query. We denote by user count query any data mining’s count query, and it is formally
defined as follows:

Definition 1 (User count query) A user count query u over D̂ is a conjunction of predicates
P1 ∧ · · · ∧ Pm where each predicate P j = ( Âi � si ) : 1 ≤ j ≤ m expresses a single
criterion such that Âi ∈ Â pr , � is a comparison operator, and si is an operand. If Âi is a
categorical attribute, then � corresponds to the equality operator “=” and si is a value from
the taxonomy treeTAi . If Âi is a numerical attribute, then si is a numerical range [smin

i , smax
i ]

such that if smin
i = smax

i then � is in {>,≥,<,≤,=} ; otherwise, � is the equal operator
(=). 
�

In general, a user count query u can be either exact, specific, or generic depending on
whether it corresponds to an exact record (equivalence class), or whether it partially intersects
with one or more records in the ε-differentially private data D̂. Note that both specific and
generic queries correspond to range queries in the literature. The following is a formal
definition of each type of a user count query.

Definition 2 (Exact user count query) A user count query u is exact if for each predicate
P = ( Âi � si ) ∈ u, si ∈ �( Âi ). 
�
Definition 3 (Specific user count query) A user count query u is specific if for each predicate
P = ( Âi � si ) ∈ u:

1. If Âi is categorical, then si ∈ �( Âi ).
2. If Âi is numerical, then si ∈ �( Âi ) or there exists exactly one range r ∈ �( Âi ) where

si ∩ r �= φ and si �= r . 
�
Definition 4 (Generic user count query) A user count query u is generic if for each predicate
P = ( Âi � si ) ∈ u:

1. If Âi is categorical, then si ∈ TAi .
2. If Âi is numerical, then ∃ r j , rl ∈ �( Âi ) such that si ∩ r j �= φ, si ∩ rl �= φ, and r j �= rl .


�
Example 1 The following are examples of user count queries over the ε-differentially private
data D̂ presented in Table 2:

Table 2 Differentially private
data table D̂

ˆCountry ˆJob ˆAge ˆSalary NCount

Any_Country Professional [18–45) [18–99) 4

Any_Country Professional [45–65) [18–99) 2

Any_Country Artist [18–45) [18–99) 1

Any_Country Artist [45–65) [18–99) 5
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Exact: u1 = ( ˆJob = “Artist”) ∧ ( ˆAge = [45 − 65))
Specific: u2 = ( ˆJob = “Artist”) ∧ ( ˆAge = [50 − 57))
Generic: u3 = ( ˆJob = “Lawyer”) ∧ ( ˆAge = [30 − 70))

Observe that the queries conformneither to the structure nor to the data in D̂. That is, attributes
ˆCountry and ˆSalary are missing, the value “Lawyer” is not in the domain �( ˆJob), and

the range [30, 70] spans beyond the values covered by all ranges in �( ˆAge). All these
issues will be addressed in Sect. 4.2.1 when the data miner submits her user count query for
preprocessing. 
�

3.3 Adversarial model

SecDM consists of three parties: data provider (data bank), data miner, and service provider
(cloud). In our security analysis, the adversary can statically corrupt, in honest-but-curious
(HBC) [42] fashion, the service provider or the data miner, but not both. The service provider
adversary tries to gain access to the contents of the anonymized data and, during query
execution, tries to infer information about the count queries and their results. On the other
hand, the data miner adversary tries to link sensitive information to patients by attempting to
gain information about the anonymized records identified by each of her queries, their count
values, and the percentage of each query count. We assume the computational power of each
adversary is bounded by a polynomial size circuit. We also assume that a protocol is in place
to provide secure pair-wise communications between parties in the SecDM framework.

3.4 Problem statement

Given ε-differentially private data D̂, the objective is to design a framework for outsourcing
D̂ to an untrusted service provider P that can answer exact, specific, and range count queries
from authorized data miners on D̂. The framework must provide three levels of security: (1)
data confidentiality, where D̂ is stored in an encrypted form such that no useful information
can be disclosed from D̂ by unauthorized parties; (2) confidential query processing, where P
is capable of processing the queries on D̂ for classification analysis without inferring infor-
mation about the queries or the underlying anonymized data; and (3) privacy preservation,
where the result of each query provides a certain privacy guarantee.

4 SecDM framework solution

4.1 Secure index construction

Given the ε-differentially private data D̂ with kc categorical attributes and kn numerical
attributes, the data provider constructs an encrypted index on all attributes in D̂ in order to
support efficient and secure processing of multi-dimensional range count queries over the
k-dimensional data, where k = kc + kn . That is, it constructs a balanced kd-tree [6] index,
where every internal (non-leaf) node is a k-dimensional node that splits the space into two
half-spaces, and each leaf node stores a noisy count corresponding to a record in D̂ (Fig. 4).

The kd-tree index is constructed with the procedure Secure Index Construction (buildIn-
dex) presented in Algorithm 4.1. BuildIndex is a recursive procedure that has four input
parameters: D̂, depth i , PK , and y. The first input parameter D̂ is the set of records for which
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the kd-tree will be constructed, where each record represents a point in the k-dimensional
space. The columns in D̂ are shuffled a priori to randomize the order of the attributes. The
second input parameter i represents the depth of the recursion that determines the split dimen-
sion. It ranges between 1 and k, where 1 is the initial value. The third input parameter PK
is the public key of the anonymous ciphertext-policy attribute-based encryption scheme A,
which will be used to secure each internal node in the index tree. To generate this key, a
security parameter λ is passed to the setup algorithm: A.Setup(1λ) ⇒ (PK , MSK ). The
last parameter y is the public key of the Exponential ElGamal scheme used to encrypt the
noisy counts in the leaf nodes. The function median (Line 5) determines the median value
of the domain �( Âi ), where Âi is an attribute from D̂. The function spli t (Line 6) then uses
a hyperplane that passes through the median value in order to split D̂ into two subsets of
records, D̂1 and D̂2. Note that the median value is chosen for splitting to ensure a balanced
tree where each leaf node is about the same distance from the root of the tree. BuildIndex

Secure Index 
Construction

 differential 
privacy

Data Provider

Encrypted
Index

Anonymized Data

Public Cloud

Service Provider

Hospital

Health Centre

Data Owner

Integrated Patient-
specific Data

(a) Setup phase

(1) ID + Count Query Request

Service 
Provider

(2) User
Authentication

(3) Query 
Preprocessing

(6) Secure Index 
Traversal

(7) Compute Total 
Noisy Count

(9) Decrypt 
Total Count 
using G.x

(8) Encrypted
(Total Count )

Data Provider Data Miner

(b) Query processing phase

Fig. 4 SecDM: a privacy-preserving framework for confidential count query processing on the cloud
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Algorithm 4.1 buildIndex: Secure Index Construction

Input: Differentially private data D̂, split dimension i , ACP-ABE public key PK , ElGamal public key y
Output: kd-tree index T

1: if |D̂| = 1 then
2: const Lea f Node(D̂, y);
3: return ;
4: end if
5: cut ← median( Âi , D̂);
6: spli t(D̂, Âi , cut, D̂1, D̂2);
7: vle f t ← build Index(D̂1, (i + 1)mod k, PK , y);

8: vright ← build Index(D̂2, (i + 1)mod k, PK , y);
9: create empty node v;
10: v.spli t_dim ← Âi ; v.spli t_value ← cut ;
11: v.lc ← vle f t ; v.rc ← vright ;
12: v.genCT (PK );
13: return kd-tree index T ;

calls itself (Lines 7–8) using D̂1 and D̂2 as inputs in order to determine the left and right
children nodes, respectively. When the procedure terminates (Line 13), it returns the kd-tree
index T . Next, we will discuss how internal nodes (Lines 9–12) and leaf nodes (Line 2) are
constructed.

4.1.1 Internal nodes construction

Each internal (non-leaf) node v in the kd-tree index corresponds to one dimension (attribute)
Âi ∈ D̂ : 1 ≤ i ≤ k of the k-dimensional space, where the splitting hyperplane is perpen-
dicular to the axis of dimension Âi , and the splitting value cut is determined by the median
function (Line 4). Node v has two child nodes, namely lc and rc, where all records contain-
ing values smaller or equal to the cut value with regard to Âi will appear in the left subtree,
whose root is v.lc, and all records containing values greater than the cut value with regard to
Âi will appear in the right subtree, whose root is v.rc. Furthermore, node v consists of two
ciphertexts, v.CTle f t and v.CTright , where the encrypted message in v.CTle f t is a pointer
(Ptr ) to the child node v.lc, and the encrypted message in v.CTright is a pointer to the child
node v.rc. The intuition is as follows: The service provider must use the key SKu provided
by the user to be allowed to securely traverse the kd-tree index and compute the answer to
the user query u. The structure of SKu and how it is built are discussed in Sect. 4.2.1. At
any node v in the kd-tree, if SKu satisfies the access structure of the ciphertext v.CTle f t ,
the ciphertext is decrypted and a pointer to the child node v.CTle f t is obtained. Similarly, if
SKu satisfies the access structure of v.CTright , the ciphertext is decrypted and a pointer to
v.CTright is obtained. If SKu satisfies both access structures, then two pointers are obtained,
indicating that both left and right subtrees must be traversed.

Access structure The ciphertexts in each node are generated using the anonymous
ciphertext-policy attribute-based encryption schemeA, where each ciphertext has an access
structure W . Each numerical attribute Âi ∈ D̂ is represented in the access structure of a
ciphertext by two attributes, Âmin

i and Âmax
i , where �( Âmin

i ) = �( Âmax
i ) = �( Âi ). On the

other hand, each categorical attribute is mapped to one attribute in the access structure of a
ciphertext. Below is the formal definition of an access structure of a ACP-ABE ciphertext.

Definition 5 (Ciphertext access structureW ) Given ε-differentially private data D̂ and a node
v from the kd-tree index over D̂, the access structure of a ciphertext of v is the conjunction
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W = [WÂ1
∧ · · · ∧ WÂi

∧ · · · ∧ WÂk
]. If Âi is a categorical attribute, then WÂi

corresponds

either to the wildcard character “∗” or to a disjunction of values from �( Âi ), where “WÂi
=

∗” means that attribute Âi should be ignored. If Âi is a numerical attribute, then WÂi
=

WÂmin
i

∧ WÂmax
i

, where WÂmin
i

and WÂmax
i

each corresponds to either the wildcard character

“∗” or a disjunction of values from �( Âi ). 
�
Note that for a given node v, the access structure of the left and right ciphertexts is

mainly concernedwith the splittingdimensionv.spli t_dim, and the split valuev.spli t_value
over D̂1 or D̂2, where D̂1, D̂2 ⊆ D̂. If v.spli t_dim is a categorical attribute Âi , then
WÂi

in the access structure of v.CTle f t should correspond to the disjunction of all values

val ∈ {�( Âi ) ∪ {1}} such that val ≤ v.spli t_value and for val = 1, where 1 represents
“Any” value. Similarly, WÂi

in the access structure of v.CTright should correspond to the

disjunction of all values val ∈ {�( Âi )∪ {1}} such that val > v.spli t_value or for val = 1.
On the other hand, if v.spli t_dim is a numerical attribute Âi , then WÂmin

i
in the access

structure of v.CTle f t should correspond to the disjunction of all values val ∈ �( Âi ) for all
val ≤ v.spli t_value, and WÂmax

i
in the access structure of v.CTright should correspond to

the disjunction of all values val ∈ �( Âi ) such that val > v.spli t_value. Regardless of
whether Âi is categorical or numerical, all values in {W\WÂi

} should correspond to “∗.”

Example 2 Given D̂ from Table 3, and given node v from kd-tree index:

a) If v.spli t_dim = Job (categorical) and v.spli t_value = 2, then the access structure of
the left and right ciphertexts can be represented as follows:

WL = (Country = ∗) ∧ (Job = 1 ∨ Job = 2) ∧ (Agemin = ∗) ∧ (Agemax =
∗) ∧ (Salarymin = ∗) ∧ (Salarymax = ∗).
WR = (Country = ∗) ∧ (Job = 1 ∨ Job = 3) ∧ (Agemin = ∗) ∧ (Agemax =
∗) ∧ (Salarymin = ∗) ∧ (Salarymax = ∗).

b) If v.spli t_dim = Age (numerical) and v.spli t_value = 1, then the access structure of
the left and right ciphertexts are:

WL = (Country = ∗)∧(Job = ∗)∧(Agemin = 1)∧(Agemax = ∗)∧(Salarymin =
∗) ∧ (Salarymax = ∗).
WR = (Country = ∗)∧(Job = ∗)∧(Agemin = ∗)∧(Agemax = 2)∧(Salarymin =
∗) ∧ (Salarymax = ∗). 
�

In procedure buildIndex presented in Algorithm 4.1, each internal node v is created after
determining its children nodes Vle f t and vright (Lines 9–12), where function genCT is
responsible for creating the left ciphertextCTle f t and the right ciphertextCTright of the node

Table 3 Transformed data table
D̂

ˆCountry ˆJob ˆAge ˆSalary NCount

1 2 1 1 4

1 2 2 1 2

1 3 1 1 1

1 3 2 1 5
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Algorithm 4.2 constLeafNode: Leaf Node Construction
Input: ε-differentially private record R, Exponential ElGamal’s public key y
Output: leaf node l
1: create empty node l;
2: l.NCount ← G.Enc(R.NCount, y, r);
3: for each numerical attribute Âi ∈ D̂ do
4: l ← genT AG(R. Âi );
5: end for
6: return l;

Algorithm 4.3 indexUpload: kd-Tree Index Upload
1: The Data Provider submits the kd-tree index T to the Service Provider;
2: The Service Provider receives T ;

by calling twice the ACP-ABE algorithmA.Enc() and passing as parameters the public key
PK of A, a pointer to the child node to be encrypted, and the values in the access structure
(without the attribute names):

v.CTle f t ← A.Enc(PK , Ptr(v.lc),WL);
v.CTright ← A.Enc(PK , Ptr(v.rc),WR);

For each attribute Âi in W that is assigned a wildcard, e.g., (Country = ∗), A.Enc()
generates a random (mal-formed) group elements [Ci, j,1,Ci, j,2] for each value in�( Âi ). On
the other hand, for each attribute in W assigned specific values, e.g., (Job = 1∨ Job = 2),
A.Enc() generates well-formed group elements for each value specified, i.e., for value 1 and
for value 2, and random group elements for each remaining value in �(Job). As a result,
all ciphertexts CT generated by A.Enc() in the kd-tree index contain the same number of
group elements regardless of the access structure.

4.1.2 Leaf nodes construction

In procedure buildIndex, as the multi-dimensional space is being recursively partitioned a
leaf node is created whenever the number of the records being partitioned reaches 1 (Lines
1–2 ). Procedure Leaf Node Construction (constLeafNode), presented in Algorithm 4.2, is
responsible for generating the leaf nodes. It takes as input a ε-differentially private record
R and Exponential ElGamal’s public key y and outputs a leaf node l. After creating an
empty node l (Line 1), the noisy count of record R is encrypted using Exponential ElGamal
encryption scheme G and stored in node l (Line 2). We choose the Exponential ElGamal
cryptosystem due to its additive homomorphism property, which allows for homomorphically
adding encrypted noisy counts together in an efficient way.

For each numerical range value R. Âi in R, a hiding commitment function genT AG() is
utilized to commit R. Âi and randomly generate a unique tag (Line 3–4).Applying genT AG()

to the same value using the same randomness always generates the same tag; however, the
correspondence between each tag and its value is kept secret. As we will see in Sect. 4.2,
using a deterministic function to generate tags for the numerical range values enables the
service provider during query execution to compute the exact percentage of the noisy count
of each reported leaf node with respect to the query being processed.

Once the kd-tree index T has been created, it is submitted to the service provider according
toAlgorithm 4.3.While Algorithm 4.3 is trivial, it is required in Sect. 1 to prove by simulation
the security of the framework.
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4.2 Confidential query processing

In this section, we illustrate how user count queries are executed in order to determine their
exact ε-differentially private answers while preserving the confidentiality of the data as well
as the queries. First, we explain how the user query is preprocessed and transformed into a
system query. Next, we discuss how the service provider securely traverses the kd-tree index,
computes the total count, and then sends the result back to the user.

4.2.1 Query preprocessing

Upon the receipt of a user’s count query u, the data provider first transforms u into a conjunc-
tion of subqueries that specify a single-value equality condition over each attribute Âi ∈ D̂.
Next, it generates a system count query SKu using algorithm A.KeyGen() from ACP-ABE
scheme. If an attribute Âi in D̂ is not specified by the user in u, then it will be considered in
SKu as if the user is asking for ( Âi = ∗). The following is the formal definition of a system
count query:

Definition 6 (System count query) Given ε-differentially private data D̂ with k attributes and
a user query u = P1∧· · ·∧Pm |P = ( Âi � si ), a system count query over D̂ is a ACP-ABE
user’s secret key SKu representing k subqueries {qÂ1

, . . . , qÂk
} such that:

• If Âi is a categorical attribute, then Âi is represented in SKu as a tuple of group elements
[Di,0, Di,1, Di,2]

• If Âi is a numerical attribute, however, it is represented in SKu as two tuples of group
elements [Dmin

i,0 , Dmin
i,1 , Dmin

i,2 ] and [Dmax
i,0 , Dmax

i,1 , Dmax
i,2 ], where each tuple corresponds

to the minimum and maximum bound of the range subquery qÂi
, respectively. 
�

The total number of group element tuples in a system query SKu is: |SKu | = kc +2× kn ,
where kc and kn are the number of categorical and numerical attributes in D̂. |SKu | is
independent of the user query u.

ProcedureQuery Preprocessing (qPreprocess) presented in Algorithm 4.4 illustrates how
a system count query SKu is constructed based on a user’s count query u. Once the user has
been authenticated successfully using user identification token U IT (Line 2), the next step
is to determine the attribute–value pairs in SKu . For each categorical attribute Âi ∈ D̂, if
predicate ( Âi ,�, si ) exists in the user count query u and si is in the domain of Âi , then the
subquery ( Âi , si .I D) is added to q , where si .I D is the identifier of the categorical value si in

Âi ’s taxonomy treeT Âi (Lines 5–6); otherwise, if si is not in the domain of Âi , then function
f indSCS(si ) (Line 8) is utilized to determine the position of si in Âi ’s taxonomy tree with
regard to the solution cut. If si is below the solution cut, then there exists exactly one node
n on the path from si to the root, such that n ∈ �( Âi ). We call such a node the Solution Cut
Subsumer (SCS) of si , and the subquery ( Âi , n.I D) is then added to q (Line 9). If si is above
the solution cut or u does not have any predicate that corresponds to a categorical attribute
Âi ∈ D̂, then the subquery ( Âi , 1) is added to q (Lines 10–11), where 1 means “ANY” value

of Âi corresponding to the root node of Âi ’s taxonomy tree T Âi .
On the other hand, if Âi is a numerical attribute and predicate ( Âi ,�, si ) exists in u, then

the values vi,1 associated with Âmin
i and vi,2 associated with Âmax

i are determined by the
function compMinMax (Line 15).When� is the equal operator (=), if si is a single value, then
vi,1 = vi,2 = Range(si ), where Range(si ) is a function that returns the identifier of the range
in�( Âi ) containing si ; otherwise, if si is a range, then vi,1 = Range(Lowerbound(si )) and
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Algorithm 4.4 qPreprocess: Query Preprocessing

Input: ε-differentially private data D̂
Output: system count query SKu , set of attribute distribution tokensN
1: The Data Provider receives user identification token U IT and user count query u from Data Miner
2: if user authentication is successful using U IT then
3: q ← {}; ADT ← {};
4: for each categorical attribute Âi ∈ D̂ do
5: if ( Âi , �, si ) ∈ u and si ∈ �( Âi ) then
6: q ← q ∪ ( Âi , si .I D);
7: else if ( Âi ,�, si ) ∈ u and si /∈ �( Âi ) then
8: n ← f indSCS(si );
9: q ← q ∪ ( Âi , n.I D);
10: else if ( Âi , �, si ) /∈ u then
11: q ← q ∪ ( Âi , 1);
12: end if
13: end for
14: for each numerical attribute Âi ∈ D̂ do
15: if ( Âi , �, si ) ∈ u then
16: (vi,1, vi,2) ← compMinMax(�( Âi ), si , �i );

17: q ← q ∪ ( Âmin
i , vi,1) ∪ ( Âmax

i , vi,2);

18: N ← N ∪ genADT (�( Âi ), vi1, vi2);
19: else
20: q ← q ∪ ( Âmin

i , 1) ∪ ( Âmax
i , rangemax );

21: end if
22: end for
23: SKu ← A.KeyGen(MSK , q);
24: return SKu , N ;
25: end if

Algorithm 4.5 queryRequest: System Count Query Request
1: The Data Provider sends the following to the Data Miner:

– System count query SKu corresponding to user count query u
– Set of attribute distribution tokens N
– Exponential ElGamal decryption key x

2: The Data Miner receives SKu , N , and x from Data Provider;
3: The Data Miner sends SKu andN to Service Provider;
4: The Service Provider receives SKu andN from Data Miner;

vi,2 = Range(Upperbound(si )). If � is equal to “≥,” then vi,1 = Range(si ) and vi,2 is the
identifier of the highest range in �( Âi ). Conversely, if � is equal to “≤,” then vi,1 = 1 and
vi,2 = Range(si ). If predicate ( Âi ,�, si ) does not exist in u for numerical attribute Âi (Lines
19–20), then vi,1 = 1 and vi,2 is the identifier of the highest range rangemax ∈ �( Âi ).

Example 3 Given Tables 2 and 3, the following are three different users’ queries and their
corresponding subqueries in the access structure of the system count query:

a) u = (Age = 50) ⇒ q = (Agemin, 2), (Agemax , 2).
b) u = (Age = [40 − 70]) ⇒ q = (Agemin, 1), (Agemax , 2).
c) u = (Age ≤ 35) ⇒ q = (Agemin, 1), (Agemax , 1). 
�
Function genADT (Line 18) is used to generate attribute distribution tokens (ADT) for

each numerical attribute Âi from D̂. Two ADT tokens, ADTmin and ADTmax , are created
for each numerical attribute for the purpose of computing the percentages of the noisy counts
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Fig. 5 ADT query overlap

of the reported leaf nodes upon query execution in order to determine the final answer (total
count) of the query. Each ADT token consists of two parts: tag and value. Assuming that
r is the range for which the ADT token is constructed, then ADT .tag = genT AG(r) and
ADT .value is the percentage of the partial overlap between query u and range r .

Example 4 Assume that in ε-differentially private data D̂, �( ˆAge) = {[18−30),
[30−45), [45−55), [55−65)},�( ˆSalary) = {[30−45), [45−60), [60−70)}, and user count
query u = (Country = “US”) ∧ (Job = “Engineer”) ∧ (Age = [25−49]) ∧
(Salary = [47−70]). Figure 5 illustrates the equivalence classes of all records (numbered
from 1,1 to 4,3), the query u (dark-gray rectangle), and the set of leaf nodes identified
by u (six light-gray rectangles). The range Age = [25−49] spans over three ranges:
[18−30), [30−45), and [45−55). Since [25−49] fully spans over [30−45), no ADT token is
required for [30−45). However, since [25−49] partially overlaps with ranges [18−30) and
[45−55), ADTmin and ADTmax should be created. For range value [18−30), ADTmin .tag =
genT AG([18−30)) and ADTmin .value = 30−25

30−18 = 42%. Similarly, for range value [45 −
55], ADTmax .tag = genT AG([45−55)) and ADTmax .value = 50−45

55−45 = 50%.On the other
hand, Salary = [47−70] partially overlaps with ranges [45−60) and [60−75) and ADTmin

and ADTmax must be created. For range value [45−60), ADTmin .tag = genT AG([45−60))
and ADTmin .value = 60−47

60−45 = 87%. Similarly, for range value [60−75], ADTmax .tag =
genT AG([60−75)) and ADTmax . value = 70−60

75−60 = 67%. 
�
Once the set of attribute–value pairs q have been determined, the system count query SKu

is then generated by encrypting q with ACP-ABE master secret key MSK using algorithm
A.KeyGen (Line 23). Next, the data provider sends the following back to the user: secret key
SKu , the set of ADT tokensN , and ElGamal decryption keyG.x that will be used eventually
to decrypt the final result of the query.

4.2.2 kd-tree index traversal

To execute a query u on D̂, the data miner sends to the service provider a system count query
SKu and a set of ADT tokens N . The service provider uses the secret key SKu to securely
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Algorithm 4.6 traverseIndex: kd-tree Index Traversal
Input: kd-tree index root node v, system count query SKu
Output: set of leaf nodes R
1: if v is a leaf node then
2: return v;
3: else
4: if A.Dec(v.CTle f t , SKu) then
5: R ← R ∪ traverseIndex(v.lc, SKu);
6: end if
7: if A.Dec(v.CTright , SKu) then
8: R ← R ∪ traverseIndex(v.rc, SKu);
9: end if
10: end if
11: return R;
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Fig. 6 a Access structure of root node v. b Generating system count query SKu from user count query u

traverse the kd-tree index and identify the set of leaf nodes satisfying u, while it uses N
to adjust the noisy count of each identified leaf node in order to compute an accurate final
answer to the query.

Procedure kd-tree Index Traversal (traverseIndex) presented in Algorithm 4.6 illustrates
how the tree is traversed recursively to answer queries. It takes two input parameters: the root
node v of the kd-tree index and a system count query SKu . If v is an internal node, then the
algorithm attempts to decrypt the left ciphertext v.CTle f t and the right ciphertext v.CTright
by separately applying the decryption function Dec from A, with the decryption key SKu ,
in order to determine whether it needs to traverse the left subtree, right subtree, or both. If
the values of the attributes associated with SKu satisfy the access structure of v.CTle f t , then
the decryption of v.CTle f t is successful and the procedure traverseIndex calls itself while
passing the left child node v.lc as input parameter (Lines 4–5). Similarly, if the values of the
attributes associated with SKu satisfy the access structure of v.CTright , then the decryption
is successful and the procedure traverseIndex calls itself while passing the right child node
v.rc as input parameter (Lines 7–8). When the algorithm reaches a leaf node v, then v is
returned (Lines 1–2). Procedure traverseIndex eventually returns the setR containing all leaf
nodes satisfying SKu (Line 11).
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Algorithm 4.7 compTCount: Total Noisy Count Computation
Input: set of leaf nodesR, set of attribute distribution tokens N
Output: ciphertext of total count 〈r , s〉
1: 〈r , s〉 ← 〈1, 1〉 // initialization
2: for each leaf node l j ∈ R do
3: 〈r j , s j 〉 ← l j .NCount ;
4: for each token ADTi ∈ N do
5: if ADTi .tag ∈ l j then

6: 〈r j , s j 〉 ← 〈r ADTi .value
j , s

ADTi .value
j 〉; // scalar multiplication

7: end if
8: end for
9: 〈r , s〉 ← 〈r .r j , s.s j 〉; // homomorphic addition
10: end for
11: return 〈r , s〉;

Example 5 Given Example 4, assume that v is the root node where v.spli t_dim = Age
( Â3) and v.spli t_value = 2 (range[30−45)). Figure 6a illustrates the access structure
of v.CTle f t and v.CTright . Figure 6b shows the system count query (secret key) SKu that
was generated from the user query u such that Age = [50−60] equates to Âmin

3 = 3 and
Âmax
3 = 4.
Since Âmin

3 = 3 from SKu is not in the access structure of v.CTle f t , the decryption is
unsuccessful, and the left subtree will not be traversed. However, Âmax

3 = 4 from SKu is
in the access structure of v.CTright , then the decryption is successful and the procedure
traverseIndex traverses the right subtree, whose root node is v.rc. 
�

4.2.3 Computing total noisy count

Having identified the set of leaf nodes R satisfying user count query u, the next step is to
compute the final answer to the count query.

Procedure Total Count Computation (compTCount) presented in Algorithm 4.7 illustrates
how the total noisy count is computed. It takes as input a set of leaf nodes R and a set
of attribute distribution tokens N . For each leaf node l j , if there is an ADT token ADTi
whose tag matches any of the tags in l j , then a percentage of the encrypted noisy count
〈r j , s j 〉 is computed by raising r j and s j to the value associated with ADTi (Lines 5–6).
To homomorphically add two noisy counts together, their first ciphertexts are multiplied
together, and the same is done for their second ciphertexts (Line 9). The output of procedure
compTCount is the encrypted total count 〈r , s〉 (Line 11).

4.2.4 Computing query result

Once ciphertext 〈r , s〉 has been computed, the service provider returns the ciphertext to the
user as the final result. As per Algorithm 4.8, when the data miner receives the encrypted
result 〈r , s〉, she uses Exponential ElGamal’s private key G.x to decrypt the ciphertext and
determine the exact noisy count resu such that resu satisfies differential privacy.
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Algorithm 4.8 queryResult: User Count Query Result
Input: Exponential ElGamal decryption key x
Output: Query result ciphertext of total count 〈r , s〉
1: The Data Miner receives ElGamal encrypted result 〈r , s〉 from Service Provider;
2: resu = G.Dec(〈r , s〉, x); // Total noisy count decryption
3: return resu ;

Fig. 7 Performance comparison
w.r.t. number of queries
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4.3 Discussion

4.3.1 Benefits of outsourcing

To analyze the benefit to the data provider for outsourcing the data to a service provider,
we measured the processing overhead of specific count queries on the data provider and the
service provider when the number of queries ranges from 200 to 1000. We choose specific
count queries to perform the experiment because they represent the worst-case scenario,
where the number of nodes traversed in the kd-tree index is minimized and the number of
ADT tokens ismaximized. Figure 7 illustrates the results of our experiment,whereweobserve
that the processing overhead on the proxy server is almost 10 times less than the overhead
on the service provider side, regardless of the number of the queries. That is, by outsourcing
the data, the data provider offloads over 90% of the query processing (computation) to the
service provider.

4.3.2 Centralized SecDM

Our proposed solution SecDM in Sect. 4 allows data miners to reuse previously generated
system queries and eliminates the need to interact with the data provider to generate the same
ones again. However, this comes at the expense of requiring the user to interact with two
parties (the data provider and the service provider), and to perform public key decryption
operations on the results encrypted using Exponential ElGamal. In some scenarios where
query reusability is not required, our framework can be easily modified to have all commu-
nications go through the data provider, as in the Centralized SecDM (C-SecDM) framework
illustrated in Fig. 8. Observe that in C-SecDM, the data miner does not have access to Expo-
nential ElGamal’s decryption key G.x , as the decryption is performed by the data provider,
and the total count result is then sent in clear text to the data miner via a secure channel.
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Decrypt 
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Fig. 8 Centralized SecDM (C-SecDM) framework

4.3.3 Security tradeoff

To present a practical framework, we choose Exponential ElGamal to encrypt the noisy
counts because this encryption scheme supports efficient homomorphic addition and integer
multiplication operations. These operations are utilized by the cloud to adjust the noisy count
of each identified leaf node in the kd-tree index tree using ADT tokens and then to compute
the total count. However, in each ADT token, ADT .value must be stored in clear text,
which reveals the percentage each noisy count should be multiplied by, without reveling
the actual value of the noisy count or its adjusted value. Rather than using Exponential
ElGamal, we could have used other encryption schemes that support multiple homomorphic
additions and multiplications. However, such schemes are inefficient and will render our
solution impractical.

4.3.4 Multiple data release

Shabtai et al. [50] and Shmueli et al. [51] indicate that the anonymization approach should
be chosen carefully in a multiple-release outsourcing scenario since it normally differs from
the one used in a single-release outsourcing scenario. However, this is out of the scope of
this paper.

5 Solution analysis

5.1 Complexity analysis

Proposition 1 The runtime complexity for constructing a kd-tree index from a differentially
private data with d equivalent classes and k attributes using Algorithms 4.1 and 4.2 is
bounded by O(k × d × log d) operations.

Proof Constructing a kd-tree with d points (equivalent classes) requires O(d × log d) [22].
Each node consists of two ciphertexts, each of which requiresO(kc +2×kn) = O(k), where
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kc and kn are the number of categorical attributes and numerical attributes, respectively.
Therefore, the required number of operations is O(k × d × log d). 
�
Proposition 2 The runtime complexity for executing a system query SKu over a kd-tree index
with d leaf nodes using Algorithms 4.6 and 4.7 is bounded by O(

√
d + r × k) operations,

where r = |R| and R is the set of reported nodes.

Proof Since SKu is an axis-parallel rectangular range query, the time required to traverse
a kd-tree and report the points (equivalent classes) stored in its leaves is O(

√
d + r) [22].

For each reported leaf node, O(2 × kc) = O(k) time is required to compute the total noisy
count. As a result, the number of operations required to traverse the tree and answer SKu is
O(

√
d + r × k). 
�

Proposition 3 The communication complexity for answering a count query is bounded by
O(k × C).

Proof For each query, only four messages are generated. The data miner sends twomessages:
one to the data provider and another to the service provider, and receives two messages: one
from the data provider and another from the service provider. Two of the messages are one
Elgamal ciphertext each, while each of the other two consists of 2 × k Elgamal ciphertexts
(ADT tokens). Hence, the overall communication complexity isO(k×C), whereC = �lg p�
is the bit length of Elgamal group element, and p is at least 2048 bits. 
�
Proposition 4 The noisy count answers satisfy ε-differential privacy.

Proof Generating a differentially private table involves three steps: selecting a candidate for
specialization, determining the split value, and publishing the noisy counts. In the following,
we will show that each of these steps preserves differential privacy. We will also use the
composition properties of differential privacy to show that the output is differentially private.

To select a candidate for specialization, we first need to compute the utility score (infor-
mation gain) of each candidate v ∈ ∪Cut(T):

IG(D, v) = Hv(D) − Hv|c(D),

where Hv(D) is the entropy of candidate vwith respect to the class attribute Acls , and Hv|c(D)

is the conditional entropy given the candidate is specialized. Having computed the score of
each candidate, exponential mechanism is used to select a candidate vi in a differentially
private manner with the following probability:

Select(vi ) = exp( ε
2�IG IG(D, vi ))

∑

v exp(
ε

2�IG IG(D, v))
,

where �IG = lg |�(Acls)| is the sensitivity of the information gain function.
Determining the split value also satisfies differential privacy. That is because for categor-

ical attributes, taxonomy trees are used. Since the taxonomy tree is fixed, the sensitivity of
the split value is 0. Therefore, splitting the records according to the taxonomy tree does not
violate differential privacy. As for numerical attributes, the domain is split into s intervals:
I = {I1, . . . , Is} and then exponential mechanism is used to choose an interval I j ∈ I with
probability:

Select(I j ) = exp( ε
2�IG IG(D, v j )) × |�(I j )|

∑s
i=1(exp(

ε
2�IG IG(D, vi )) × |�(Ii )| ,
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where the length of the interval I j is denoted by |�(I j )|. Choosing a split value from the
interval I j also satisfies ε-differential privacy because the probability of choosing any split
value is proportional to exp( ε

2�IG IG(D, v j )). As for publishing the noisy counts, a Lap(2/ε)
is added to satisfy ε-differential privacy, since the sensitivity of count queries is 1.

Theorem 5.1 Sequential composition [45] Let each Agi provide ε-differential privacy. A
sequence of Agi (D) over the dataset D provides (�iεi )-differential privacy.

Theorem 5.2 Parallel composition [45] Let each Agi provide ε-differential privacy. A
sequence of Agi (Di ) over a set of disjoint datasets Di provides (�iεi )-differential privacy.

Based on Theorems 5.1 and 5.2, the output data table satisfies ε-differential privacy.
Moreover, according to [43], any postprocessing on a differentially private data does not
violate its privacy. Hence, the computed noisy count answers based on the table also satisfy
ε-differential privacy. 
�

6 Performance evaluation

In this section, we evaluate the performance of the SecDM framework. First, we discuss
the implementation details, and then we present the experimental results that include data
utility, solution construction scalability, the scalability of query processing with respect to
the number of records, and the efficiency with respect to the size of the queries.

6.1 Implementation and setup

The SecDM framework is implemented in C++. Experiments were conducted on a machine
equipped with an Intel Core i7 3.8GHz CPU and 16GB RAM, running 64-bit Windows
7. The index tree is implemented according to the kd-tree description in [22]. Both of the
cryptographic primitives, ACP-ABE and Exponential ElGamal, were implemented using
MIRACL,3 an open-source library for big number and elliptic curve cryptography. To imple-
ment ACP-ABE, we chose Boneh–Lynn–Shacham (BLS) pairing-friendly curve from [11]:
Y 2 = X3 +b, where b = √

w + √
m,m = {−1,−2}, and w = {0, 1, 2}. The chosen elliptic

curve has a pairing embedding degree of 24 and a AES security level of 256. The pairing
e : G1 ×G2 → GT is a type 3 pairing, where G1 is a point over the base field, G2 is a point
over an extension field of degree 3, andGT is a finite field point over the kth extension, where
k = 24 is the embedding degree for the BLS curve. To implement Exponential ElGamal, we
randomly choose the message space and calculation modulus p to be a large 2048-bit prime
for which q = (p − 1)/α is a 256-bit prime. Since Exponential ElGamal depends on the
multiplicative order of g and having a large collection of ciphertexts, we choose g to be a
generator of the multiplicative subgroup Gq such that order(g) = q − 1.

We utilize a real-life adult data set [2] in our experiments to illustrate the performance
of SecDM framework. The adult dataset consists of 45,222 census records containing six
numerical attributes, eight categorical attributes, and a class attribute with two levels: “≤
50K ” and “> 50K .” A further description of the attributes can be found in [29]. Since the
maximum number of attributes is 14, we assume that the number of attributes in a query can
range from 2 to 14, and the average number of attributes in a query is 8.

3 MIRACL: https://certivox.org/display/EXT/MIRACL.
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6.2 Experimental results

6.2.1 Data utility

Blum et al. [8] show that count queries are very useful for performing statistical analysis and
extracting patterns and trends from the data. We analyze the data utility for count queries
by measuring the classification accuracy of the count query results for several values of
the privacy budget ε. We generate ε-differentially private records using DiffGen algorithm,
where the number of specializations is set to 4, 7, 11, 13 and 16, and the utility function
I n f oGain(D, v) is chosen to determine the score of each candidate v during the specializa-
tion process. We utilize C4.5 classifier [49] to measure the classification accuracy of both the
raw data and the results of count queries. In each case, we use two-thirds (2/3) of the records
to build (train) the classifier, and one-third (1/3) of the records for testing. Applying C4.5
on the raw data yields a classifier with 85.1% classification accuracy. Figure 9 illustrates the
classification accuracy of the count query results for ε = 0.1, 0.25, 0.5 and 1.We observe that
our proposed solution maintains high level of data utility as the biggest drop in classification
accuracy when compared with the accuracy of raw data is 85.1% − 75.4% = 9.7%. We
also observe that the utility is directly affected by the privacy budget ε. That is, the more the
privacy budget is allocated, the higher the classification accuracy will be. This trend is due
to the fact that a higher privacy budget leads to a more accurate partitioning, and less noise
is added to the count of each equivalent class at the leaf level. Our findings are consistent
with [46]. Our algorithm has a major advantage over other algorithms, e.g., [27,29], because
data miners have better flexibility to perform the required data analysis. For example, the
algorithm in [27] allows for interactive queries to build a classifier. That means the data has
to be permanently shut down after certain number of queries, which prevents the data miner
from building another classifier based on the same data.

6.2.2 Scalability

In this section, we measure the construction scalability of our solution, as well as the query
processing scalability.

Solution construction scalability There are three major phases involved in constructing
the SecDM framework: data anonymization using theDiffGen algorithm, data preprocessing,
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Fig. 10 Scalability of framework
construction w.r.t. number of
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and kd-tree index construction; the latter can be further divided into two subphases: internal
nodes construction and leaf nodes construction. According to procedure build Index in
Algorithm 4.1, the complexity for constructing SecDM is dominated by the number of ε-
differentially private records, which in turn is impacted by the number of raw data records
and the setting of the number of specializations for theDiffGen algorithm. The objective is to
measure the runtime of each construction phase to ensure its capability to scale up in terms
of records size.

Figure 10 depicts the runtime of each of the construction phases, where the number of data
records ranges from 20,000 to 100,000 records, and the number of specializations is set to 8.
We observe that the runtime of each phase grows linearly as the number of records increases.
We also observe that the overall construction runtime scales up linearly as well, as it takes 47
s to construct the framework for a dataset with 20,000 records, 72 s for 40,000 records, 96 s
for 60,000 records, 106 s for 80,000 records, and 121 s for 100,000 records. Since each phase
of the algorithm, as well as the overall construction time, grows linearly with respect to the
total number of records, this suggests the construction of SecDM is scalable with regard to
the data size.

Query processing scalability One major contribution of our work is the development of a
scalable framework for query processing on anonymized data in the cloud. Since the number
of specializations during the anonymization process impacts the total number of anonymized
records, we study the runtime for answering different types of user count queries under
different number of specializations, while the number of raw data records ranges from 20,000
to 100,000. Given the three user count query types,Exact, Specific, andGeneric, we randomly
create 500 queries of each type, and report the average runtime, where the average number
of attributes in each query is 8.

Figure 11a–c depicts the processing runtime of each type of user count queries when the
number of specializations is set to 8, 10, and 12, respectively. In Fig. 11a, we observe that
the processing runtime of each query type grows linearly as the number of raw data records
continues to increase at the same rate. That is, the processing runtime grows from 4.8 s for
20,000 records to 6 s for 100,000 recordswhen the query type is exact; from 6.5 sec for 20,000
records to 8.5 s for 100,000 recordswhen the query type is specific; and from 12.4 s for 20,000
records to 31.2 s for 100,000 records when the query type is generic. Similarly, in Fig. 11b, c
we observe that the processing runtime of each query type is linear with regard to the number
of raw data records for all three types. The increase in the number of specializations leads
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Fig. 11 Scalability of query processing w.r.t. the number of raw data records and the number of specializations
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to a higher number of anonymized records, thus explaining the increase in the average query
processing runtime for each query type in Fig. 11a–c.

Figure 12 depicts the performance of categorical and numerical attributes with respect
to number of records, when the number of specializations is 8, the query type is generic,
and the total number of attributes is 12 (6 categorical and 6 numerical). We observe that
the processing runtime of both categorical and numerical attributes grows linearly as the
number of raw data records continues to increase at the same rate. Although the number
of categorical and numerical attributes in the experiment is the same, processing numerical
attributes requires approximately 2.5 the time required for processing categorical attributes.
This ismainly due to the need to split each numerical attribute into several ranges and then use
exponentialmechanism to determine the split points. In contrast, the split points in categorical
attributes are fixed and determined based on the taxonomy trees.

6.2.3 Efficiency

To demonstrate the efficiency of our SecDM framework,wemeasure the impact of the number
of attributes in a query on the processing time needed by the cloud to process the query and
by the user to decrypt the result. We split the query processing phase into two subphases:
tree traversal and compute NCount. We assume the number of specializations is 8, while the
number of raw data records is 100,000. We create 500 queries of each query type, and report
the average runtime.

Figure 13a–c depicts the processing runtime of exact, specific, and generic queries, respec-
tively, when the average number of attributes in a query ranges from 2 to 14. We observe that
the most dominant phase with regard to the processing runtime is the tree traversal phase,
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Fig. 13 Efficiency w.r.t. the number of attributes per query for exact, specific, and generic queries

whereas the resulting decryption phase is the least dominant. The total processing runtime
of each query type decreases linearly as the number of attributes per query increases. That
is, the total runtime decreases from 31.8 to 0.9 s when the number of attributes per query
increases from 2 to 14 for exact queries, decreases from 37.2 to 1 s when the number of
attributes per query increases from 2 to 14 for specific queries, and decreases from 78.8 to
10.4 s when the number of attributes per query increases from 2 to 14 for generic queries. The
total processing runtime improves as the number of attributes increases because adding more
attributes to a query makes it more restrictive and, consequently, requires fewer nodes to be
traversed in the kd-tree index. Assuming the average noisy count value for each anonymized
record is 10,000, we observe that the decryption phase, which involves decrypting Exponen-
tial ElGamal ciphertexts, is very small (less than 2 s) and barely sensitive to the increase in
the number of attributes per query.

7 Conclusions and future work

In this paper, we propose a privacy-preserving framework for confidential count query pro-
cessing in a cloud computing environment. Our framework maintains the privacy of the out-
sourced data while providing data confidentiality, confidential query processing, and privacy-
preserving results. Users (data miners) of the system are not required to have prior knowledge
about the data, and incur lightweight computation overhead. The framework also allows for
query reusability, which reduces the communication and processing time.We perform several
experimental evaluations on real-life data, and we show that the framework can efficiently
answer different types of queries and is scalable with regard to the number of data records.

As for future work, we plan on investigating how to enable authorized users to self-secure
their queries before submitting them to the cloud in order to eliminate the dependency on the
data provider. We also plan to investigate a scenario in which data is obtained from multiple
data providers and stored in a distributed outsourcing environment. Given that our frame-
work currently supports only user count queries consisting of conjunction of predicates, we
will investigate how to support complex queries with various types of Boolean operators,
including OR, NOT and XOR.

Appendix

A. Security analysis

The proposed framework is sound since all adversaries are non-colluding and semi-honest,
according to our adversarial model. In the rest of this section, we focus on proving that the
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protocol is confidentiality-preserving. We also illustrate the accessibility of the keys in the
framework, and show that all keys are properly distributed between the parties.
Privacy by simulation Goldreich [34] defines the security of a protocol in the semi-honest
adversarial model as follows.

Definition 7 (Privacy w.r.t. semi-honest behavior) [34]. Let f : ({0, 1}∗)m �→ ({0, 1}∗)m be
anm-ary deterministic polynomial-time functionality,where fi (x1, . . . , xm) is the ith element
of f (x1, . . . , xm). Let 	 be an m-party protocol for computing f . The view of the ith party
during an execution of 	 over x = (x1, . . . , xn) is view	

i (x) = (xi , ri ,mi,1, . . . ,mi,t ),
where ri equals the contents of the ith party’s internal random tape, and mi, j repre-
sents the jth message that it received. For I = {i1, . . . , il} ⊆ {1, . . . ,m}, view	

I (x) =
(I , view	

i1 (x), . . . , view
	
il (x)). We say that 	 securely computes f in the presence of static

semi-honest adversaries if there exists probabilistic polynomial-time algorithm (simulator)
S such that for every I ⊆ {1, . . . ,m}:

{S(I , (xi1 , . . . , xil ), f I (x))}x∈({0,1}∗)m
c≡ {view	

I (x)}x∈({0,1}∗)m

where
c≡ denotes computational indistinguishability. 
�

According to Definition 7, it is sufficient to show that we can effectively simulate the
view of each party during the execution of the SecDM protocol given the input, output and
acceptable leaked information of that party, in order to prove that our protocol is secure.
We achieve that by simulating each message received by a party in each algorithm. If we
can simulate the input messages of each party in the protocol based only on its input and
output, and the party is not able to recognize that it is dealing with a simulator, that means
the protocol does not leak anything to that party since it would have been able to compute its
output from its input without the need to be involved in the protocol in the first place.

First, we define the concepts query distribution and query processing threshold.

Definition 8 (Query distribution) The distribution of the data mining queries, denoted byU ,
is the set of all possible queries, where each query consists of kc + 2 × kn integers, each of
which maps to a value in the domain of a categorical or numerical attribute.

Definition 9 (Query processing threshold) Query processing threshold, denoted by α, is
the maximum number of queries allowed to be processed on a kd-tree before the latter is
replaced by a new shuffled and re-encrypted kd-tree submitted by the data provider to the
service provider.

Definition 10 (Privacy-preserving data outsourcing framework) Let F be a framework that
enables a service provider (cloud) to answer queries from data miners on hosted (outsourced)
data. F is a privacy-preserving framework if the following properties hold:

1. Correctness For any user query u ∈ U , the cloud returns resu to the data miner such
resu is the correct answer to u.

2. Data confidentialityAsemi-honest adversaryE , statically corrupting the service provider,
cannot learn anything more about the hosted data from an accepted transcript of F than
she could given only the total number of numerical and categorical attributes, and the
size of each attribute’s domain.

3. Query confidentiality A semi-honest adversary E , statically corrupting the service
provider, cannot learn anything about the query.

4. Differentially private output For all u ∈ U , resu satisfies differential privacy.
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Definition 11 (α-privacy-preserving data outsourcing framework) An outsourcing frame-
work F is α-privacy-preserving if it satisfies all properties in Definition 10 except that the
cloud learns the search pattern of at most α number of queries.

Theorem A.1 SecDM, as specified in Protocols 4.1–4.7, is an α-privacy-preserving data
outsourcing framework.

Proof We proved in Sect. 1 Property 1 (correctness) and Property 4 (differentially private
output).

To prove Property 2 (data Confidentiality) and Property 3 (query Confidentiality), we
build a simulator S that generates a view that is statistically indistinguishable from the view
of E in real execution. As per Definition 7, the view of the service provider consists mainly of
the messages it receives from the other parties. Although we have 8 algorithms, the service
provider receives messages from the protocol only in Algorithm 3—Line 2 (encrypted index
from data provider) and Algorithm 5—Line 4 (encrypted query from data miner). All other
steps in all algorithms do not need to be simulated because they either do not involve the
service provider at all (e.g., the steps inAlgorithm 1, 2 and 4), or involve ciphertext operations
(e.g., the steps in Algorithm 6 and 7) which are inherently secure from the security of the
cryptosystems used (ABE and Elgamal).

In Algorithm 4.3 - Line 2, the service provider receives kd-tree index T from the data provider.
Simulation:
1. Supplied with k, the total number of attributes in D̂, and the size of each attribute’s domain

|�( Âi )| : 1 ≤ i ≤ k, the simulator S generates attribute domains �( Â′
1), �( Â′

2), . . . , �( Â′
k )

such that each domain �( Â′
i ) consists of |�( Âi )| distinct values, e.g., 1, 2, . . . , |�( Âi )|.

2. S constructs a contingency table D̂′ with k columns each of which represents one attribute Â′
i ,

and n records each of which represents one possible combination of attribute values such that
n = ∏k

i=1 |�( Â′
i )|.

3. Supplied with the total number of numerical attributes kn and categorical attributes kc in D̂ such
that kn + kc = k, the size of each attribute’s domain, and the security parameter of ACP-ABE, S
runs A.Setup(1λ) to generate public key PK ′ and master secret key MSK ′. Similarly, given the
security parameter of ElGamal, S runsG.KeyGen() to generate public key y′ and secret key x ′.

4. Given D̂′, split dimension i = 1, PK ′ and y′, S runs Algorithm 4.1 and Algorithm 4.2 to construct
a balanced kd-tree T ′ over D̂′:
(a) In Line 12 ofAlgorithm 4.1, n randomgroup elements are generated for each ciphertextCTle f t

or CTright of each internal node v.
(b) In Line 2 of Algorithm 4.2, a random ElGamal ciphertext, e.g., encryption of “0,” is assigned

to the encrypted NCount of each leaf node l.

Indistinguishability Argument: T ′ is computationally indistinguishable from T .
First, we construct a hybrid tree called T ′′, and then show the relation between T ′′ and real the kd-tree
T , and between T ′′ and the simulated kd-tree T ′.
1. Let T ′′ be a kd-tree index over D̂′′ = D̂ constructed using Algorithm 4.1 and Algorithm 4.2,

where:

(a) The ACP-ABE ciphertexts CTle f t and CTright of each internal node are random group ele-
ments, as per Step 4.a above.

(b) The noisy count NCount in each leaf node is a random ElGamal ciphertext, as per Step 4.b
above.

2. T ′′ is computationally indistinguishable from T , denoted by T ′′ c≡ T , because:

(a) The ACP-ABE ciphertexts in the internal nodes of the kd-tree are IND-CPA-secure under the
decisional bilinear diffie-hellman (DBDH) assumption [41] and the decision linear (D-Linear)
assumption [9].
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(b) Since ElGamal is IND-CPA-secure, the distribution of the ciphertext (output) space is indepen-
dent of the key/message. Therefore, encrypting any message with a random factor is sufficient
to generate a computationally indistinguishable NCount .

3. T ′′ is statistically indistinguishable from T ′, denoted by T ′′ s≡ T ′, because:

(a) D̂′′ s≡ D̂′, where there is one-to-one correspondence between the equivalent classes in D̂′′
and the records in D̂′.

(b) The random coins used in ACP-ABE encryption in Algorithm 4.1 are drawn from the same
distribution.

(c) The random coins used in ElGamal encryption in Algorithm 4.2 are drawn from the same
distribution.

4. From Steps (2) and (3), we conclude that T ′ c≡ T .

In Algorithm 4.5 - Line 4, the service provider receives system count query SKu and a set of
attribute distribution tokens N .
Simulation:

1. S obtains α sample queries Ū = {u′
1, u

′
2, . . . , u

′
α} from U .

2. For each query u′
i ∈ Ū , S constructs a query pair (SKu′

i
,N ′

i ) as follows:

• S runs A.KeyGen(MSK ′, u′
i ) to construct system count query SKu′

i
.

• S constructs a setN ′
i containing 2× kn ADT tokens, where ADT .value for each token is a

randomly generated ElGamal ciphertext, e.g., encryption of “0.”

3. Up to α times, each time a data miner in the real world submits a query, S submits to the service
in the simulation world a different query pair from the set of pairs generated in Step 2.

Indistinguishability Argument:

1. Given any real system query SKu , SKu′
i

c≡ SKu because:

(a) u′
i

s≡ u.

(b) SKu′ c≡ SKu since |SKu′ | = |SKu | = kc + 2× kn group element tuples, and the ACP-ABE
scheme is IND-CPA-secure.

2. Given any real ADT set N , N ′
i

c≡ N because:

– |N ′
i | = |N | = 2 × kn .

– The ADT .value of each token in N ′
i is computationally indistinguishable from the

ADT .value of any real token due to the IND-CPA-secure property of ElGamal.

Discussion The threshold parameter α can range between 1 and ∞. To better understand the
impact of revealing α queries to S, we analyze the security when α = 1 and α > 1.

Case 1 α = 1 This represents the highest security level of our protocol, where one system
query is executed per one kd-tree. Since the kd-tree index is constructed by Algorithm 4.1 as
a balanced tree and since each path contains all attributes, no correlation can be established
between any two attributes and the attributes are protected when evaluated for splitting the
k-dimensional space. As for the data mining query, the service provider cannot determine
what attributes are included in the query, nor know what values or ranges the data miner is
interested in. Since Algorithm 4.6 yields howmany leaf nodes (equivalent classes) identified,
this reveals how general the query is. In general, the more leaf nodes identified by a query,
the more general the query is. The revealing of the number of identified leaf nodes, however,
will not help the service provider better guess the final result of the query since it cannot
access the encrypted noisy counts.

Although setting α to 1 provides the highest security w.r.t. query search pattern, it is
impractical due to the cost of reconstructing the kd-tree. We refer the reader to solution
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Table 4 Key accessibility w.r.t. all parties in SecDM framework

Scheme Key Data bank Service provider Data miner

G Private key x Generator, full control No access Read access

G Public key y Generator, full control Read access Read access

A Master secret key MSK Generator, full control No access No access

A Public key PK Generator, full control Read access Read access

A User secret key SKu Generator, full control Read access Read access

construction scalability in Sect. 6.2.2 for more details about the cost of reconstructing the
kd-tree.

Case 2 α > 1 While our proposed framework supports confidential access to the data,
executingmultiple queries on the same kd-tree index reveals the search pattern of the queries,
where the service provider is able to determine the number of leaf nodes that overlap between
the queries. Let u and u′ be two user queries that satisfy the same set of leaf nodes l =
{l1, . . . , lr }, and let collision set denote the set of all unique queries that could satisfy l. The
size of the collision set can be determined as follows:

|collision set(l)| =
r

∏

i=1

k
∏

j=1

|li .Range( Â j )| : Â j is numerical,

where |li .Range( Â j )| denotes the size of the range of attribute Â j in the equivalent class
represented by leaf node li . Note that since the noisy counts are encrypted using ElGamal,
the position of the attributes in the tree is hidden and is shuffled every time the kd-tree is
constructed, disclosing the search pattern on the differentially private data reveals nothing
about the final (noisy) result of each query, nor about the attributes/values in each query. The
smaller the value of α is, the less overlap between queries is revealed. Several techniques
have been proposed in the literature to address the problem of private search pattern, such
as [61]; however, it is out of the scope of this paper.

Note that each time the data provider generates a shuffled and re-encrypted kd-tree, a
different ACP-ABE master secret key MSK should be used to prevent the service provider
from processing new queries on the old tree.

In our model, we assume the data miner can have access to the entire differentially private
dataset. The data privacy is guaranteed by differential privacy. Therefore, there is no need to
simulate the view of the data miner.

Moreover, since our framework returns differentially private results for each count query
in a deterministic way, any repetition of queries will leak no extra information about the data.
Also, since count query results are differentially private, our framework is also protected
against background knowledge attacks.

The proposed protocol in this paper involves the composition of secure subprotocols in
which all intermediate outputs from one subprotocol are inputs to the next subprotocol. These
intermediate outputs are either simulated given the final output and the local input for each
party or computed as random shares. Using the composition theorem (Goldreich [34]), it can
be shown that if each subprotocol is secure, then the resulting composition is also secure.

Key accessibility Protecting the data distributed between different parties from unauthorized
access is an essential part of securing the SecDM framework.Wemust ensure that all keys are
properly distributed such that no party can decrypt any data it is not supposed to have access
to in plaintext. Table 4 illustrates the accessibility of each key by each party in SecDM.
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Observe that the data provider is the generator of all encryption keys in the system and
maintains full control over them. The service provider, on the other hand, has no access to
Exponential ElGamal’s private key, G.x , that would have allowed her to fully decrypt the
contents of each leaf node in the kd-tree index. Moreover, not having access to the ACP-ABE
master secret key A.MSK prevents the service provider from being able to determine the
access structures of the ciphertexts in each internal node of the kd-tree index. As for the user
(data miner), not having access to A.MSK prevents her from bypassing authentication and
creating her own system count queries.

B. Correctness analysis

The correctness proof is twofold. First, we prove that Algorithm 4.6 identifies all the leaf
nodes satisfying the user count query u. Second, we prove that Algorithm 4.7 produces the
exact total count answer to u, and the answer is differentially private.

Proposition 5 Given a user count query u = P1 ∧ · · · ∧ Pm, Algorithm 4.6 produces a set
R containing all leaf nodes satisfying u.

Proof To prove the correctness of Algorithm 4.6 we prove partial correctness and termina-
tion.

1. Partial correctness We provide a proof by induction.
Basis When u includes no predicate for any of the attributes in D̂, then each categorical

attribute in SKu is assigned the value 1 (the identifier of the root node of the corresponding
taxonomy tree), whereas for each numerical attribute Âi ∈ D̂, Âmin

i = 1 (the lowest range

identifier) and Âmax
i is assigned the highest range identifier in �( Âi ). When SKu is used to

traverse the kd-tree index, all internal nodes will be traversed until the leaf nodes are reached.
That is, if the current node v is internal,A.Dec(v.CTle f t , SKu) andA.Dec(v.CTright , SKu)

will always be true because the attributes in SKu will always satisfy the access structure in
v.CTle f t and v.CTright , and pointers to the left child node and right child node will always
be obtained.

Induction step Assume that traversing the kd-tree index using SKu produces the correct
set of leaf nodesR satisfying u. We show that if a new predicate P = ( Âi � si ) is added to
u such that ú = u +P , then traversing the kd-tree index using SKú produces the correct set
of leaf nodes Ŕ satisfying ú. We observe that Ŕ ⊆ R. To complete the proof in this step, we
assume thatP corresponds to a categorical attribute; however, the sameanalogy canbe applied
to a numerical attribute’s predicate. When v is an internal node and v.spli t_dim = Âi , if
si .I D ≤ v.spli t_value thenA.Dec(v.CTright , SKu)will evaluate to false, and no recursive
call of procedure traverseIndex over node v.rc will be executed. This behavior is correct
because in this case, the subtree whose root is v.rc includes the leaf nodes that do not satisfy
P , and hence there is no need to search the subtree rooted at v.rc. The same logic can be
used to reason about the case when si .I D > v.spli t_value.

2. Termination Each recursive call on a child node partitions the space of the parent node
in half. This shows that the algorithm strictly moves from one level to a lower level in the
kd-tree index while reducing the search space by half until all leaf nodes satisfying u are
reached. 
�
Proposition 6 Given a set of leaf nodes R generated by a system count query SKu and a
set of attribute distribution tokens N , the output of Algorithm 4.7 is the exact noisy count
answer corresponding to SKu.
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Proof To prove the correctness of Algorithm 4.7, we prove partial correctness and termina-
tion.

1. Partial correctness We provide a proof by induction.
Basis When N = φ, the inner loop will never be executed. In this case, procedure

compTCount will go through all the leaf nodes in R and add together all corresponding
noisy counts by utilizing the homomorphic addition property of Exponential ElGamal. This
is correct because if no ADT token was originally generated, then the user query is an exact
query, and 100% of the noisy count of each leaf node in R must be used.

Induction step Assume that for N = {ADT1, . . . , ADTl}, procedure compTCount
computes the exact noisy count answer to the user count query u. We show that if a
new token ADTl+1 for numerical attribute Âi is added such that Ń = N ∪ ADTl+1 =
{ADT1, . . . , ADTl+1}, where Ń corresponds to the system count query SKú , then proce-
dure compTCount computes the exact noisy count answer to the user count query ú. Without
loss of generality, we assume that the set of leaf nodes R remains the same. Since ADTl+1

is for numerical attribute Âi , then ADTl+1.value represents the percentage of the partial
intersection between query ú and attribute Âi by definition. If ú is a generic query, then not
all leaf nodes in R will contain a tag that corresponds to ADTl+1.tag. However, the noisy
count of each leaf node l containing a tag that matches ADTl+1.tag must be adjusted by
multiplying l.NCount with ADTl+1.value.

2. Termination We denote by n the initial number of leaf nodes in R. If n > 0, then we
enter the outer loop. We also denote by m the initial number of ADT tokens in N . If m > 0
then we enter the inner loop such that after each iteration, the variablem is decreased by one,
and it keeps strictly decreasing until m = 0 where the inner loop terminates. Similarly, the
outer loop will terminate as n keeps strictly decreasing until it reaches 0; at that stage, the
algorithm terminates. 
�
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