
One-Time Programs Made Practical

Lianying Zhao1(B), Joseph I. Choi2, Didem Demirag3, Kevin R. B. Butler2,
Mohammad Mannan3, Erman Ayday4, and Jeremy Clark3

1 University of Toronto, Toronto, ON, Canada
lianying.zhao@utoronto.ca

2 University of Florida, Gainesville, FL, USA
3 Concordia University, Montreal, QC, Canada

4 Case Western Reserve University, Cleveland, OH, USA

Abstract. A one-time program (OTP) works as follows: Alice pro-
vides Bob with the implementation of some function. Bob can have
the function evaluated exclusively on a single input of his choosing.
Once executed, the program will fail to evaluate on any other input.
State-of-the-art one-time programs have remained theoretical, requiring
custom hardware that is cost-ineffective/unavailable, or confined to ad-
hoc/unrealistic assumptions. To bridge this gap, we explore how the
Trusted Execution Environment (TEE) of modern CPUs can realize the
OTP functionality. Specifically, we build two flavours of such a system:
in the first, the TEE directly enforces the one-timeness of the program;
in the second, the program is represented with a garbled circuit and the
TEE ensures Bob’s input can only be wired into the circuit once, equiva-
lent to a smaller cryptographic primitive called one-time memory. These
have different performance profiles: the first is best when Alice’s input is
small and Bob’s is large, and the second for the converse.

1 Introduction

Consider the well-studied scenario of secure two-party computation: Alice and
Bob want to compute a function on their inputs, but they do not want to disclose
these inputs to each other (beyond what can be inferred from the output of the
computation). This is traditionally handled by an interactive protocol between
Alice and Bob.1 In this paper, we instead study a non-interactive protocol as
follows: Alice prepares a device for Bob with the function and her input included;
once Bob receives this device from Alice, he supplies his input and learns the
outcome of the computation. The device will not reveal the outcome for any
additional inputs (thus, a one-time program [12]). Alice might be a company
selling the device in a retail store, and Bob the customer; the two never interact
directly. By using the device offline, Bob is assured that his input remains private.

To build a one-time program (OTP), we use the Trusted Execution Envi-
ronment (TEE), a hardware-assisted secure mode on modern processors, where

1 Hazay and Lindell [19] give a thorough treatment of interactive two-party protocols.

c© International Financial Cryptography Association 2019
I. Goldberg and T. Moore (Eds.): FC 2019, LNCS 11598, pp. 646–666, 2019.
https://doi.org/10.1007/978-3-030-32101-7_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32101-7_37&domain=pdf
https://doi.org/10.1007/978-3-030-32101-7_37

One-Time Programs Made Practical 647

execution integrity and secrecy are ensured [31], with qualities that include plat-
form state binding and protection of succinct secrets. TEEs may appear to offer
a trivial solution to OTPs; however, complexities arise due to Bob’s physical pos-
session of the device and, more importantly, performance issues. We propose two
configurations for one-time programs built on TEEs: (1) deployed directly in the
TEE, and (2) deployed indirectly via TEE-backed one-time memory (OTM) [12]
and garbled circuits [50] outside of the TEE. OTMs hold two keys, only one of
which gets revealed (dependent on its input); the other is effectively destroyed.

Contributions. Our system, built using Intel Trusted Execution Technology
(TXT) [13] and Trusted Platform Module (TPM) [45] as the TEE, is available
today (as opposed to custom OTP/OTM implementations using FPGA [21],
PUF [24], quantum mechanisms [5], or online services [25]) and could be built
for less than $500.2

We propose and implement the following OTP variants, considering that
TPM-sealing3 or encrypting data is time-consuming.

• TXT-only seals/unseals Alice’s input directly, and performance is thus sen-
sitive to Alice’s input size. Bob’s input is entered in plaintext and processed
in TXT after he has received the device.

• GC-based converts the logic into garbled circuit, where number of key pairs
is determined by Bob’s input size. Key pairs are encrypted/decrypted with a
master key (MK). This way, the performance is largely determined by Bob’s
input size. Upon receiving the device, he does the one-time selection of key
pairs in TXT to reflect his input. Thereafter, evaluation of the garbled circuit
can be done on any machine with the selected keys.

To illustrate the generality of our solution, we also map the following application
into our proposed OTP paradigm: a company selling devices that will perform a
private genomic test on the customer’s sequenced genome. For this use case, in
one of our two variants (TXT-only), a company can initialize the device in 5.6 s
and a customer can perform a test in 34 s.

2 Preliminaries

2.1 One-Time Program Background

A one-time program can be conceived of as a non-interactive version of a two
party computation: y = f(a, b) where a is Alice’s private input, b is Bob’s, f
is a public function (or program), and y is the output. Alice hands to Bob an
implementation of fa(·) which Bob can evaluate on any input of his choosing:
yb = fa(b). Once he executes on b, he cannot compute fa(·) again on a differ-
ent input. For our practical use-case, we conceive of OTPs with less generality
2 As an example, Intel STK2mv64CC, a Compute Stick that supports both TXT and

TPM, was priced at $499.95 USD on Amazon.com (as of September 2018).
3 A state-bound cryptographic operation performed by the TPM chip, like encryption.

http://amazon.com/

648 L. Zhao et al.

as originally proposed by Goldwasser et al. [12]; essentially we treat them as
one-time, non-interactive programs that hide Alice and Bob’s private inputs
from each other without any strong guarantees on f itself. Note with a general
compiler for f (which we have for both flavours of our system), it is easy but
inefficient to keep f private.4

2.2 Threat Model and Requirements

We informally consider an OTP to be secure if the following properties are
achieved: (1) Alice’s input a is confidential from Bob; (2) Bob’s input b is con-
fidential from Alice, and (3) no more than one b can be executed in f(a, b)
per device. We argue the security of our two systems in Sect. 8 but provide a
synopsis here first. Property 3 is enforced through a trusted execution environ-
ment, either directly (TXT-only variant in Sect. 4) or indirectly via a one-time
memory device (GC-based TXT in Sect. 5) as per the Goldwasser et al. construc-
tion. Given Property 3, we consider Property 1 to be satisfied if an adversary
learns at most negligible information about a when they choose b and observe
〈OTP, f(a, b), b〉 as opposed to simply 〈f(a, b), b〉, where OTP is the entire instan-
tiation of the system, including the TPM-sealed memory and system details (and
for the GC-variant: the garbled circuit and keys revealed through specifying b).
Property 2 is achieved by being provisioned an offline device that can compute
fa(b) without any interaction with Alice. There is a possibility that the device
surreptitiously stores Bob’s input and tries to leak it back to Alice. We discuss
this systems-level attack in Sect. 8. We also address a subtle adaptive security
attack in the full version of our paper.

The selection of TEE has to reflect the aforementioned Properties 1 and 3.
Property 3 is achieved by stateful (recording the one-time state) and integrity-
protected (enforcing one-timeness) execution, which is the fundamental purpose
of all today’s TEEs. Moreover, both Properties 1 and 3 mandate no information
leakage, which can occur through either software or physical side-channels. We
choose Intel TXT, primarily because of its exclusiveness, which means: TXT
occupies the entire system when secure execution is started and no other code
can run in parallel. This naturally avoids all software side-channels, an advantage
over non-exclusive TEEs. We do consider using non-exclusive TEEs as future
exploration when the challenge of software side-channels has been overcome,
e.g., for Intel SGX, the (recent) continually identified side-channel attacks, such
as Foreshadow [6], branch shadowing [29], cache attacks [4], and more; for ARM
TrustZone, there have been TruSpy [51], Cachegrab [36], etc. They all point to
the situation when trusted and untrusted code run on shared hardware.

The known physical side-channels can also be mitigated in the setting
of our OTP, i.e., DMA attacks are impossible if I/O protection is enable
4 Essentially, one would define a very general function we might call Apply that will

execute the first input variable on the second: y = Apply(f, b) = f(b). Since f is
now Alice’s private input, it is hidden. The implementation of Apply might be a
universal circuit where f defines the gates’ logic—in this case Apply would leak (an
upper-bound on) the circuit size of f but otherwise keep f private.

One-Time Programs Made Practical 649

(by the chipset), and the cold-boot attack [17] can be avoided if we choose
computers with RAM soldered on the motherboard (cannot be removed to be
mounted on another machine, see Sect. 8).

We strive for a reasonable, real-world threat model where we mitigate attacks
introduced by our system but do not necessarily resolve attacks that apply
broadly to practical security systems. Specifically, we assume:

• Alice is monetarily driven or at least curious to learn Bob’s input, while Bob
is similarly curious to learn the algorithm of the circuit and/or re-evaluate it
on multiple inputs of his choice.

• We assume Alice produces a device that can be reasonably assured to execute
as promised (disclosed source, attestation quotes over an integral channel, and
no network capabilities).

• We assume that Alice’s circuit (including the function and her input) actually
constitutes the promised functionality (e.g., is a legitimate genomic test).

• We assume the sound delivery of the device to Bob. We do not consider
devices potentially subverted in transit which applies to all electronics [40].

• Both Alice and Bob have to trust the hardware manufacturer (in our case,
Intel and the TPM vendor) for their own purposes. Alice trusts that the circuit
can only be evaluated once on a given input from Bob, while Bob trusts that
the received circuit is genuine and the output results are trustworthy.

• Bob has only bounded computational power, and may go to some lab effort,
such as tapping pins on the motherboard and cloning a hard drive, but not
efforts as complicated as imaging a chip [27,28,43].

• Components on the motherboard cannot be manipulated easily (e.g., forward-
ing TPM traffic from a forged chip to a genuine one by desoldering).

2.3 Intel TXT and TPM

Intel Trusted Execution Technology (TXT) is also known as “late launch”, for its
capability to launch secure execution at any point, occupying the entire system.
When the CPU enters the special mode of TXT, all current machine state is
discarded/suspended and a fresh secure session is started, hence its exclusiveness,
as opposed to sharing hardware with untrusted code.

Components. TXT relies on three mandatory hardware components to func-
tion: (a) CPU. The instruction set is extended with a few new instructions for the
management of TXT execution. (b) Chipset. The chipset (on the motherboard)
is responsible for enforcing I/O protection such that the specified range of I/O
space is only accessible by the protected code in TXT; and (c) TPM. Trusted
Platform Module [45] is a microchip, serving as the secure storage (termed Secure
Element). Its PCR (Platform Configuration Register) is volatile storage contain-
ing the machine state, in the form of concatenated hash values. There are also
multiple PCRs for different purposes. On the TPM, there is also non-volatile
storage (termed NVRAM), allocated in the unit of index of various sizes. Mul-
tiple indices can be defined depending on the capacity of a specific TPM model.

650 L. Zhao et al.

Measured Launch. A provisioning stage is always involved where the platform
is assumed trusted and uncompromised. A piece of code is measured (similar to
hashing) and the measurements are stored in certain TPM NVRAM indices
as policies. Thereafter (in our case in the normal execution mode with Bob),
the program being loaded is measured and compared with the policies stored in
TPM. The system may then abort execution if mismatch is detected, or otherwise
proceed. This process is enforced by the CPU.

Machine State Binding. As run-time secrecy (secret in use) is ensured by
measured launch and I/O isolation, we also need secrecy for stored data (secret
at rest). Alice’s input should not be learned by Bob when the device is shipped
to him. From the start of TXT execution, each stage measures the next stage’s
code and extends the hash values as measurement to the PCR (concatenated
and hashed with the existing value). This way, the measurements are chained,
and at a specific time the PCR value reflects what has been loaded before. The
root of this chained trust is the measured launch.

Such chained measurements (in PCRs) can be used to derive the key for
data encryption, so that only when a desired software stack is running can the
protected data be decrypted. This cryptographic operation performed by the
TPM is termed sealing. A piece of data sealed under certain PCRs can only
be unsealed under the same PCRs, hence bound to a specific machine state.
The sealed data (ciphertext) can be stored anywhere depending on its size. It is
noteworthy to mention that there exists a distinct equivalent of sealing which,
instead of just encryption, stores data in a TPM NVRAM index and binds its
access to a set of PCRs. As a result, without the correct machine state, the
NVRAM index is completely inaccessible (read/write) and thus replaying the
ciphertext is prevented. We term it PCR-bound NVRAM sealing in this paper
and use it for our OTP prototype implementation.

3 Related Work

In the original one-time program paper by Goldwasser et al. [12], OTM is left
as a theoretical device. In the ensuing years, there have been some design sug-
gestions based on quantum mechanisms [5], physically unclonable functions [24],
and FPGA circuits [21]. (a) Järvinen et al. [21] provide an FPGA-based imple-
mentation for GC/OTP, with a GC evaluation of AES, as an example of a com-
plex OTP application. They conclude that although GC/OTP can be realized,
their solution should be used only for “truly security-critical applications” due
to high deployment and operational costs. They also provide a cryptographic
mechanism for protecting against a certain adaptive attack with one-time pro-
grams; it is tailored for situations where the function’s output size is larger
than the length of a special holdoff string stored at each OTM. (b) Kitamura
et al. [25] realize OTP without OTM by proposing a distributed protocol, based
on secret sharing, between non-colluding entities to realize the ‘select one key;
delete the other key’ functionality. This introduces further interaction and enti-
ties. Our approach is in the opposite direction: removing all interaction (other

One-Time Programs Made Practical 651

than transfer of the device) from the protocol. (c) Prior to OTP being proposed,
Gunupudi and Tate [16] proposed count-limited private key usage for realizing
non-interactive oblivious transfer using a TPM. Their solution requires changes
in the TPM design (due to lack of a TEE). In contrast, we utilize unmodified
TPM 1.2. (d) In a more generalized setting, ICE [41] and Ariadne [42] con-
sider the state continuity of any stateful program (including N-timeness) in the
face of unexpected interruption, and propose mechanisms to ensure both roll-
back protection and usability (i.e., liveness). We solve the specific problem of
one-timeness/N-timeness, focusing more on how to deal with input/output and
its implication on performance. We do sacrifice liveness (i.e., we flip the one-
timeness flag upon entry and thus the program might run zero time if crashed
halfway). We believe their approaches can be applied in conjunction with ours.

4 System 1: TXT-Only

Overview. In the first system, we propose to achieve one-timeness by running
the protected program in TEE only once (relying on logic integrity) and stor-
ing its persistent state (e.g., the one-time indicator) in a way that it is only
accessible from within the TEE. To eliminate information leakage from soft-
ware side-channels, we have chosen Intel TXT for its exclusiveness (i.e., no other
software in parallel).5 We hence name this design TXT-only.

To achieve minimal TCB (Trusted Computing Base) and simplicity, we
choose native C programming in TXT (as opposed to running an OS/VM).
Therefore, for one-time programs that have an existing implementation in other
languages, per-application adaptation is required (cf. similar porting effort is
needed for the GC-based variant in Sect. 5). New programs may not require
extra effort.

Design. We briefly describe the components and workflow of the TXT-only
system as follows. A one-time indicator (flag) is sealed into the PCR-bound TPM
NVRAM to prevent replay attacks. The indicator is checked and then flipped
upon entry of the OTP. Without network connection, the device shipped to the
client can no longer leak any of the client’s secrets to the vendor. Therefore, only
the vendor’s secret input has to be protected. We TPM-seal the vendor input on
hard drive for better scalability, and there is no need to address replay attacks
for vendor input as one-timeness is already enforced with the flag.

The OTP program is loaded by the Intel official project tboot [20] and GRUB.
It complies with the Multiboot specification [11], and for accessing TPM, we
reuse part of the code from tboot, and develop our own functions for commands
that are unavailable elsewhere, e.g., reading/writing indices with PCR-bound
NVRAM sealing. Since we do not load a whole OS into TXT with tboot, we
cannot use OS services for disk I/O access; instead, we implement raw PATA
(Parallel ATA, a legacy interface to the hard drive, compatible mode with
SATA) logic and directly access disk sectors with DMA (Direct Memory Access).
5 We consider various TEEs and justify this choice in the full version of our paper.

652 L. Zhao et al.

Vendor
Input

[sealed]
Vendor
Input TPM

Client
Input TXT Logic

Output

ABORT

1

2

Vendor

Client

1

0
1TXT

TPM

and sealed
0

Fig. 1. Our realization of OTPs spans two phases when relying on TXT alone for the
entire computation. Alice is active only during phase 1; Bob only during phase 2.

In the provisioning mode, the OTP program performs a one-time setup, such as
initiating the flag in NVRAM, sealing (overwriting) Alice’s secret, etc. Once the
normal execution mode is entered, the program will refuse to run a second time.

Memory Exposure. As an optional feature for certain computers with swap-
pable RAM, we expose the unsealed vendor input in very small chunks during
execution. For example, if the vendor input has 100 records, we would unseal one
record into RAM each iteration for processing the whole user input. This way, in
case of the destructive cold boot attack, the adversary only learns one-hundredth
of the vendor’s secret, and no more attempts are possible (the indicator is already
updated).

4.1 TXT-Only Provisioning/Evaluation.

Figure 1 gives an overview of TXT-only, illustrating the initial provisioning by
Alice and evaluation of the function upon delivery to Bob. Note that what is
delivered to Bob is the entire computer in our prototype (laptop or barebone
like Intel NUC).

Provisioning at Alice’s Site. At first, Alice is tasked with setting up the
box, which will be delivered to Bob. Alice performs the following: (1) Write the
integrity-protected payload/logic in C adapted to the native TXT environment,
e.g., static-linking any external libraries and reading input data in small chunks.
We may refer to it as the TXT program thereinafter. (2) In the provisioning
mode, initialize the flag to 0 and seal.6 The one-timeness flag is stored with the
PCR-bound NVRAM sealing. Instead of depending on a password and regular
sealing, this is like stronger access-controlled ciphertext. (3) Seal Alice’s input
onto the hard drive.

6 A flag is more straightforward to implement than a TPM monotonic counter, thanks
to the PCR-bound NVRAM sealing, whereas a counter would involve extra steps
(such as attesting to the counterAuth password).

One-Time Programs Made Practical 653

Evaluation at Bob’s Site. After receiving the computation box from Alice,
Bob performs the following: (1) Place the file with Bob’s input on the hard drive.
(2) Load the TXT program in normal execution mode, which will read in Bob’s
input and unseal Alice’s input to compute on. (3) Receive the evaluation result
(e.g., from the screen or hard drive). As long as it is Bob’s first attempt to run
the TXT program, the computation will be permitted and the result will be
returned to Bob. Otherwise, the TXT program will abort upon loading in step
(2), as shown in Fig. 1.

5 System 2: GC-Based

As seen in our TXT-only approach to OTP (System 1) the data processing
for protection is only applied to Alice’s input (with either sealing/unsealing or
encryption/decryption), and Bob’s input is always exposed in plaintext due to
the machine’s physical possession by Bob. Intuitively, we may think that it is
a good choice when Alice’s input is relatively small regardless of Bob’s input
size. However, there might be other applications where Alice’s input is substan-
tially larger and become the performance bottleneck. Is there a construction that
complements TXT-only and is less sensitive to Alice’s input size? The answer
may lie in garbled circuits. During garbled circuit execution, randomly generated
strings (or keys) are used to iteratively unlock each gate until arriving at the final
output. Alice’s input (size) is only “reflected” in the garbled circuit (assumed
not trivially invertible [12]), and the key pairs (whose number is determined by
Bob’s input size, not to do with Alice’s) are sealed/encrypted, hence insensitive
to Alice’s input size.

To adapt garbled circuits for OTP, key generation and key selection steps
are separated. As long as we limit key selection to occur a single time, and
the unchosen key of each key pair is never revealed, we can prevent running a
particular circuit on a different input. To prevent keys from being selected more
than once, we need to instantiate a one-time memory (OTM), which reveals the
key corresponding to each input bit and effectively destroys (or its equivalent)
the unchosen key in the key pair. OTM is left as a theoretical device in the
original OTP paper [12]. We realize it using Intel TXT and the TPM. As in
System 1, we seal a one-time flag into the PCR-bound TPM NVRAM, and
minimize the TXT logic to just handle key selection, in preparation for GC
execution. Alice will seal (in advance) key pairs for garbling Bob’s inputs. Bob
may then boot into TXT to receive the keys corresponding to his input. When
Bob reads a key off the device (say for input bit 0), the corresponding key (for
input bit 1) is erased.7 By instantiating an OTM in this manner, we can replace
interactive oblivious transfer (OT) and perform the rest of the garbled circuit
execution offline, passing key output from trusted selection. By combining TXT
and garbled circuits in this way, sealing complexity is now tied to Bob’s inputs.
We name this alternate construction GC-based (System 2).

7 Unselected keys remain sealed, if never unsealed it serves as cryptographic deletion.

654 L. Zhao et al.

Frigate
Compiler

Battleship
(key gen mode)

Wire
File

Vendor
Input

Boolean
Circuit

TXT Logic

Key Pairs for
Client Input

Battleship
(evaluation mode) Output

1

2

3

Vendor

ClientTXT

and sealed
0

ABORT

Key Pairs for
Client Input

[sealed]

TPM

1

TPM

0
1

Client Keys

Actual
Client Input

Fig. 2. In our GC-based approach to OTP, Alice generates key pairs and seals them.
Bob unseals the keys that correspond to his input and locally evaluates the function.

Performance Overhead with TPM Sealing. According to our measurement,
each TPM sealing/unsealing operation takes about 500 ms, and therefore 1 GB
of key pairs would need about 1000 h, which is infeasible. Instead, we generate
a random number as an encryption key (MK) at provisioning time and the GC
key pairs are encrypted with MK. We only seal MK. This way, MK becomes per-
deployment, and reprovisioning the system will not make the sealed key pairs
reusable due to the change of MK (i.e., the old MK is replaced by the new key).
Note that we could also apply the same approach to TXT-only (i.e., encrypting
Alice’s input with MK and sealing only MK), if needed by the application.

Memory Exposure. Similarly to the TXT-only OTP, our GC-based approach
can also optionally adapt to address the cold-boot attack. MK becomes a single
point of failure if exposed in such memory attacks, i.e., all key pairs can be
decrypted and one-timeness is lost. As with TXT-only, for smaller-sized client
input, we can seal the key pairs directly and only unseal into RAM in small
chunks.

5.1 Implementation

We use the Boolean circuit compiler Frigate [32] to implement the garbled cir-
cuit components of GC-based. We choose the Frigate compiler for the following
reasons: Frigate outperforms several other garbled-circuit compilers; it is also
extensively validated and found to produce correct and functioning circuits where
other compilers fail [32]. The interpreter and execution functionalities of Frigate
are separately referred to as Battleship. For our purposes, we split Battleship

One-Time Programs Made Practical 655

execution into two standalone phases: a key pair generation phase (gen) and a
function evaluation phase (evl). Our specific modifications to Battleship that
make split-phase execution possible are detailed in the full version of our paper.

Our GC-based approach to OTP relies on TXT for trusted key selection and
leaves the computation for garbled circuits, as shown in Fig. 2. In our setting,
Alice represents the vendor and Bob represents the client.

Provisioning at Alice’s Site. Alice sets up the OTP box by doing the follow-
ing: (1) Initialize flag to 0 and seal in the TXT program’s provisioning mode. (2)
Write and compile, using Frigate, the wire program (.wir), together with Alice’s
input, into the circuit.8 (3) Load the compiled .mfrig and .ffrig files, vendor’s
input, and the Battleship executable onto the box. (4) Write the TXT program
(for key selection) in the same way as in TXT-only. (5) Run Battleship in key-
generation mode to generate the k0

i and k1
i key-pairs corresponding to each of

the i bits of Bob’s input. These are saved to file. (6) Seal the newly generated
key pairs onto the hard-drive in provisioning mode of the TXT program. Alice is
able to generate the correct number of key pairs, since garbled circuit programs
take inputs of a predetermined size, meaning Alice knows the size of Bob’s input.
Costly sealing of all key pairs could be switched out for sealing of the master
key (MK) used to encrypt the key pairs.

Evaluation at Bob’s Site. Bob, upon receiving the OTP box from Alice,
performs the following steps to evaluate the function on his input: (1) Place
the file with Bob’s input bits on the hard drive. (2) Load the TXT program
in normal (non-provisioning) mode for key selection. (3) Receive selected keys
corresponding to Bob’s input bits; these are output to disk in plaintext. As long
as it is Bob’s first attempt to select keys, the TXT program will return the keys
corresponding to Bob’s input. Otherwise, the TXT program will abort upon
loading in step (2), as shown in Fig. 2. After Bob’s inputs have been successfully
garbled (or converted into keys) and saved on the disk, Bob can continue with
the evaluation properly. TXT is no longer required. (4) Reboot the system into
the OS (e.g., Ubuntu). (5) Launch Battleship in circuit-evaluation mode. (6)
Receive the evaluation result from Battleship. When Battleship is launched in
circuit-evaluation mode, the saved keys corresponding to Bob’s input are read
in. Battleship also takes vendor input (if not compiled into the circuit) before
processing the garbled circuit. The Boolean circuit is read in from the .mfrig
and .ffrig files produced by Frigate. Evaluation is non-interactive and offline.
The evaluation result is available only to Bob.

6 Case Study

We apply our proposed systems on a concrete use case based on genomic test-
ing as a prototype. Single nucleotide polymorphism (SNP) is a common form
8 The wire program may be written and compiled on a separate machine from that

which will be shipped to Bob. If Alice chooses to use the same machine, the (no
longer needed) raw wire code and Frigate executable should be removed from the
box before provisioning continues.

656 L. Zhao et al.

of mutation in human DNA. Certain sets of SNPs determine the susceptibility
of an individual to specific diseases. Analyzing an individual’s set of SNPs may
reveal what kind of diseases a person may have. More generally, genomic data
can uniquely identify a person, as it not only gives information about a person’s
association with diseases, but also about the individual’s relatives [35]. Indeed,
advancements in genomics research have given rise to concerns about individual
privacy and led to a number of related work in this space. For instance, Canim
et al. [7] and Fisch et al. [10] utilize tamper-resistant hardware to analyze/store
health records. Other works [2,49] investigate efficient, privacy-preserving anal-
ysis of health data.

While a number of different techniques have been proposed for privacy-
preserving genomic testing, ours is the first work to address this using one-time
programs grounded in secure hardware. Other than providing one-timeness, the
proposed scheme also provides (i) non-interactivity, in which the user does not
need to interact with the vendor during the protocol, and (ii) pattern-hiding,
which ensures that the patterns used in vendor’s test are kept private from the
user. On the other hand, homomorphic encryption-based schemes [1] lack non-
interactivity and functional encryption-based schemes [34] lack non-interactivity
and pattern-hiding. We did not specifically implement these other techniques and
compare our solution with them. However, from the performance results that are
reported in the original papers, we can argue that our proposed scheme provides
comparable (if not better) efficiency compared to these techniques.

Our aim is to prevent the adversary (the client/Bob), who uses the device
for genomic testing, from learning which positions of his genome are checked
and how they are checked, specifically for the genomic testing of the breast can-
cer (BRCA) gene. BRCA1 and BRCA2 are tumor suppressor genes. If certain
mutations are observed in these genes, the person will have an increased prob-
ability of having breast and/or ovarian cancer [48]. Hence, genomic testing for
BRCA1 and BRCA2 mutations is highly indicative of individuals’ predisposition
to develop breast and/or ovarian cancer.

We aim also to protect the privacy of the vendor (the company/Alice) that
provides the genomic testing and prevent the case where the adversary extracts
the test, learns how it works, and consequently, tests other people without having
to purchase the test. We aim to protect both the locations that are checked on
the genome and the magnitude of the risk factor corresponding to that position.
Note that client’s input is secure, as Bob is provided the device and he does not
have to interact with Alice to perform the genomic test.

6.1 Genomic Test

In order to perform our genomic testing, we obtained the SNPs related with
BRCA19 along with their risk factors from SNPedia [8], an open source wiki site

9 Similarly, we can also list the SNPs for BRCA2 and determine the contribution of
the observed SNPs to the total risk factor.

One-Time Programs Made Practical 657

that provides the list of these SNPs. The SNPs that are observed on BRCA1 and
their corresponding risk factors for breast cancer are omitted here for brevity.

We obtain genotype files of different people from the openSNP website [14].
The genotype files contain the extracted SNPs from a person’s genome. At a
high level, for each SNP of the patient that is linked to BRCA1, we add the
corresponding risk factor to the overall risk.

If a BRCA1-associated SNP is observed in the patient’s SNP file, we check
the allele combination and add the corresponding risk factor to the total. In
order to prevent a malicious client from discovering which SNPs are checked, we
check every line in the patient’s SNP file. If an SNP related to breast cancer is
not observed at a certain position, we add zero to the risk factor rather than
skipping that SNP to prevent inference of checked SNPs using side channels.

Let i denote the reference number of an SNP and sji be the allele combination
of SNP i for individual j. Also, Si and Ci are two vectors keeping all observed
allele combinations of SNP i and the corresponding risk factors, respectively.
Then, the equation to calculate the total risk factor for individual j can be
shown as RFj =

∑
i f(sji) where

f(sji) =

{
Ci(�) if sji = Si(�) for � = 0, 1, . . . , |Si|
0 otherwise

For instance, for the SNP with ID i = rs28897696, Si = <AA,AC> and Ci =
<7, 6>. If the allele combination of SNP rs28897696 for individual j corresponds
to one of the elements in Si, we add the corresponding value from Ci to the total
risk factor.

6.2 Construction for GC-Based

The garbled circuit version of the genomic test presented in Sect. 6.1 is written
as wire (.wir) code accepted by the Frigate garbled circuit compiler. The code
follows the test description in Sect. 6.1, adjusting overall risk factor upon com-
paring allele-pairs of matching SNPs and explicitly adding zero when needed.

We choose Bob’s input from AncestryDNA files available on the openSNP
website [14]. We perform preprocessing on these to obtain a compact representa-
tion of the data. Alice’s input is hard-coded into the circuit at compile-time, by
initializing an unsigned int of vendor input size and assigning each bit’s value
using Frigate’s wire operator.

Final Input Representation. Following the original design of Battleship, inputs
are accepted as a single string of hex digits (each 4 bits). Each digit is treated sep-
arately, and input is parsed byte-by-byte (e.g., 4116 is represented as 100000102).

We use 7 hex digits (28 unsigned bits) for the SNP reference number and a
single hex digit (4 unsigned bits) to represent the allele pair out of 16 possible
combinations of A/T/C/G. Alice’s input contains 2 more hex digits (8 signed
bits) for risk factor, supporting individual risk factor values ranging from -128
to 127. We keep risk factor a signed value, since some genetic mutations lower

658 L. Zhao et al.

the risk of disease. Although we did not observe any such mutations pertaining
to BRCA1, our representation gives extensibility to tests for other diseases.

Output Representation. The program outputs a signed 16-bit value, allowing us
to support cumulative risk factor ranging from −32,768 to 32,767.10

6.3 Construction for TXT-only

In TXT-only, the genomic test logic of Sect. 6.1 is ported in pure C but largely
keeps the representation used by the GC program (Sect. 6.2). Alice’s input is in
the form of 7 hex digits for the SNP ID, 1 hex digit for the allele pair and 2
digits for the risk factor. Bob’s input is 2 digits shorter without the risk factor.

We pay special attention to minimizing exposure of Alice’s input in RAM
to defend against potential cold-boot attack. We achieve this by processing one
record at a time performing all operations on and deleting it before moving on to
the next record. We also seal each record (10 bytes) into one sealed chunk (322
bytes), which consumes more space. In each iteration, we unseal one of Alice’s
records and compare with all of Bob’s records. For certain laptops and other
computers with RAM soldered on the motherboard, this is optional.

Table 1. TXT-only results with ven-
dor input fixed at 880 bits and varying
client input size, averaged over 10 runs.
Prov./Exec. refers to the provisioning
mode and execution mode respectively.

Client input (bits) Prov. (ms) Exec. (ms)

224 5640.17 9394.58

2K 5640.17 9393.88

22K 5640.17 9388.27

224K 5640.17 9426.56

2M 5640.17 11078.19

22M 5640.17 33427.50

Table 2. TXT-only results with client
input fixed at 224k bits and varying ven-
dor input size, averaged over 10 runs. Per-
formance of TXT-only is linear and time
taken is proportional to vendor input size.

Vendor input (bits) Prov. (ms) Exec. (ms)

880 5640.17 9426.56

8800 53515.75 92551.43

88000 527026.89 921338.53

7 Performance Evaluation

In this section, we evaluate the two OTP systems’ performance/scalability, with
varying client and vendor inputs, and try to statistically verify the suitability of
the two intuitive designs in different usage scenarios. We perform our evaluation

10 This can easily be adjusted, but is accompanied by substantial changes in the result-
ing circuit size. For example, an 11 GB circuit that outputs 16 bits grows to 18 GB
by doubling the output size to 32 bits. We conservatively choose 16 bits for demon-
stration purposes, but the output size may be reduced as appropriate.

One-Time Programs Made Practical 659

on a machine with a 3.50 GHz i7-4771 CPU, Infineon TPM 1.2, 8 GB RAM, 320 GB
primary hard-disk, additional 1 TB hard-disk11 functioning as a one-time memory
(dedicated to storing garbled circuit, and client andvendor input), runningUbuntu
14.04.5 LTS. In one case, we required an alternate testing environment: a server-
class machine with a 40 core 2.20 GHz Intel Xeon CPU and 128 GB of RAM.12

We perform experiments to determine the effects of varying either client or
vendor input size. Based on the case study, the vendor has 880 bits and the
client has 22.4M bits of input, so we use 224 and 880 as the base numbers for
our evaluation. We multiply by multiples of 10 to show the effect of order-of-
magnitude changes on inputs. We start with 224 for client and 880 for vendor
inputs. When varying client input, we fix vendor input at 880 bits. When varying
vendor input, we fix client input at 224K bits.

7.1 Benchmarking TXT-only

Varying Client Input. Table 1 shows the timing results for TXT-only pro-
visioning and execution with fixed vendor input and varying client input size.
During provisioning, only the vendor input is sealed, so the provisioning time is
constant in all cases. As client input size increases, so does execution time, but
moderately. Performance is insensitive to client input size up through the 224K
case. Even for the largest (22M) test case, increasing the client input size by two
orders of magnitude results only in a slowdown by a factor of 3.5x.

Varying Vendor Input. Table 2 shows the timing results with fixed client input
and varying vendor input size. Although we only tested against three configura-
tions, we see an order-of-magnitude increase in vendor input size is accompanied
by an order-of-magnitude increase in both provisioning and execution times.

7.2 Benchmarking GC-Based

Table 3. GC-based results with client input
fixed at 224k bits, varying vendor input size,
and encryption of keys by a sealed master key,
averaged over 10 runs.

Vendor

input (bits)

gen (ms) Prov. (ms) Sel. (ms) evl (ms)

880 2323.7 4244.03 2508.73 31815.4

8800 3198.7 4244.03 2508.73 32200.4

88000 3286.9 4244.03 2508.73 32000.9

We use the same experimental
setup as used in TXT-only, but
with additional time taken by the
GC portion. Vendor and client
each incur runtime costs from a
GC (gen/evl) and a sealing-based
(Prov./Sel.) phase.

11 We use a second disk to simulate what is shipped to the client (with all test data con-
solidated), separate from our primary disk for development.

12 Another option would have been to upgrade the memory of the initial evaluation
machine, but we chose to forgo this, as a test run on the server-class machine revealed
that upwards of 60 GB would be required (not supportable by the motherboard).

660 L. Zhao et al.

Table 4. GC-based results with vendor input
fixed at 880 bits, varying client input size, and
encryption of keys by a sealed master key, aver-
aged over 10 runs. Provisioning- and execution-
mode times were measured separately. *s indi-
cate tests run in an alternate environment, due
to insufficient memory on our primary setup.

Client input

(bits)

gen (ms) Prov. (ms) Sel. (ms) evl (ms)

224 1503.7 843.64 600.55 1350.8

2K 1318.9 906.70 688.62 1631.8

22K 1659.7 991.91 724.24 3643.7

224K 2323.7 4244.03 2508.73 31815.4

2M 16842.8 33934.54 19188.31 305362.8

22M 148387.9* 346606.87 283704.57 3108271*

Varying Vendor Input. We are
interested in whether GC-based is
less sensitive to the size of Alice’s
input than TXT-only ; see Table 3.
Since provisioning (Prov.) involves
sealing a constant number of key
pairs, and selection (Sel.) is depen-
dent on the unsealing of these key
pairs to output one key from each,
there is no change. Both Battle-
ship gen and evl mode timing is
largely invariant, as well. Whereas
System 1 performance was linearly
dependent on vendor input size, we
observe that GC-based (System 2)
is indeed not sensitive to vendor input.

Table 5. Performance for TXT-only and GC-
based OTP implementations of the BRCA1
genomic test, averaged over 10 runs. Vendor
input is 880 bits. Client input is 22,447,296
bits. *s indicate tests run in an alternate envi-
ronment, due to insufficient memory on our pri-
mary testing setup.

OTP type Mode Timing (ms)

TXT-only Prov. 5640.17

Exec. 33427.50

GC-based gen 148387.9*

Prov. 346606.87

Sel. 283704.57

evl 3108271*

Varying Client Input. For com-
pleteness, we also examine the
effects of varying client input size
on runtime; see Table 4. Prov. and
Sel. stages are both slow as client
input size increases, since more key
pairs must be sealed/unsealed. gen
and evl times are also affected by
an increase in client input bits.
Most notably, evl demonstrates a
near order-of-magnitude slowdown
from the 224K case to the 2M case,
and the slowdown trend continues
into the 22M case (despite using
the better-provisioned machine to
evaluate the 22M case). We indeed find that TXT-only OTP is complemented
by GC-based OTP, where performance is sensitive to client input.

7.3 Analysis

Onto our real-world genomic test (among other padded data sets for the eval-
uation purpose), Alice’s input comprises the 22 SNPs associated with BRCA1.
Each SNP entry takes up 40 bits, so Alice’s input takes up 880 bits. Bob’s input
comprises the 701,478 SNPs drawn from his AncestryDNA file, each of which
is represented with 32 bits, adding up to a total size of 22,447,296 bits. This
genomic test corresponds to our earlier experiment with vendor input size of 880
bits and client input size of 22M bits.

Table 5 puts together the results for both OTP systems. Even at first glance,
we see that TXT-only OTP vastly outperforms the GC-based OTP. Provisioning

One-Time Programs Made Practical 661

is two orders of magnitude slower in GC-based OTP, and trusted selection itself
is an order of magnitude slower than the entire execution mode of TXT-only
OTP. gen and evl further introduce a performance hit to GC-based OTP (again,
despite the fact that we evaluated this case on a better-provisioned machine).
TXT-only is the superior option for our genomic application.

Choosing One OTP. We already saw in Sect. 7.1 that TXT-only OTP is less
sensitive to client input, whereas we saw in Sect. 7.2 that GC-based OTP is less
sensitive to vendor input. We illustrate the four cases in Table 6.

Table 6. Depending on the input sizes
of vendor and client, one system may
be preferred to the other. GC-based
OTP is favorable when large vendor
input is paired with small client input;
TXT-only OTP otherwise.

Small vendor

+Small client

TXT-only

Small vendor

+Large client

TXT-only

Large vendor

+Small client

GC-based

Large vendor

+Large client

TXT-only

In this specific use-case of genomic
testing, we are in the upper-right quad-
rant and thus the TXT-only OTP domi-
nates. However, other use cases (consid-
ered in the full version of our paper)
might occupy the lower-left quadrant; if
so, GC-based will outperform the TXT-
only OTP. What should we do if both
inputs are of similar size (i.e., equally
“small” or “large”)? A safe bet is to stick
with the TXT-only OTP. Even though
GC technology continues to improve, gar-
bled circuits will always be less efficient
than running the code natively.

7.4 Another Use Case: Database Queries

To give an example where the vendor input can be significantly large, we may
consider another potential and feasible application of our proposed OTP designs,
where GC-based can outperform TXT-only. It is also in a medical setting where
the protocol is between two parties, namely a company that owns a database
consisting of patient data and a research center that wants to utilize patient
data. The patient data held at the company contains both phenotypical and
genotypical properties. The research center wants to perform a test to determine
the relationship of a certain mutation (e.g., a SNP) with a given phenotype.
There may be three approaches for this scenario:

1. Private information retrieval [9]: PIR allows a user to retrieve data from
a database without revealing what is retrieved. Moreover, the user also does
not learn about the rest of the data in the database (i.e., symmetric PIR [37]).
However, it does not let the user compute over the database (such as calcu-
lating the relationship of a certain genetic variant with a phenotype among
the people in the database).

2. Database is public, query is private: The company can keep its database
public and the research center can query the database as much as it wants.
However, with this approach the privacy of the database is not preserved.
Moreover, there is no limit to the queries that the research center does.

662 L. Zhao et al.

As an alternative to this, database may be kept encrypted and the research
center can run its queries on the encrypted database (e.g., homomorphic
encryption). The result of the query would then be decrypted by the data
owner at the end of the computation [23]. However, this scheme introduces
high computational overhead.

3. Database is not public, query is exposed: In this approach, the com-
pany keeps its database secret and the research center sends the query to
the company. This time the query of the research center is revealed to the
company and the privacy of the research center is compromised.

In the case of GC-based, the company stores its database into the device (in
the form of garbled circuit) and the research center purchases the device to run
its query (in TXT) on it. This system enables both parties’ privacy. The device
does not leak any information about the database and also the company does not
learn about the query of the research center, as the research center purchases
the device and gives the query as an input to it. In order to determine the
relationship of a certain mutation to a phenotype, chi-squared test can be used
to determine the p-value, that helps the research center to determine whether a
mutation has a significant relation to a phenotype. We leave this to future work.

8 Security Analysis

(a) Replay attacks. The adversary may try to trick the OTP into execut-
ing multiple times by replaying a previous state, even without compromising
the TEE, or the one-time logic therein. The secrets (e.g., MK) only have per-
deployment freshness (fixed at Alice’s site). Nevertheless, in our implementation,
the TPM NVRAM indices where the one-timeness flag and MK are stored are
configured with PCR-bound protection, i.e., outside the correct environment,
they are even inaccessible for read/write, let alone to replay.

(b) Memory side-channel attacks. Despite the hardware-aided protection
from TEE, sensitive plaintext data must be exposed at certain points. For
instance, MK is needed for encrypting/decrypting key pairs, and the key pairs
when being selected must also be in plaintext. Software memory attacks [6,26,30]
do not apply to our OTP systems, as the selected TEE (TXT) is exclusive. In our
design, the code running in TEE does not even involve an OS, driver, hypervisor,
or any software run-time. There are generally two categories of physical mem-
ory attacks: non-destructive ones that can be repeated (e.g., DMA attacks [38]);
and the destructive (only one attempt) physical cold-boot attack [17]. All I/O
access (especially DMA) is disabled for the TEE-protected regions and thus
DMA attacks no longer pose a threat.

The effective cold-boot attack requires that the RAM modules are swappable
and plaintext content is in RAM. For certain laptops or barebone computers [22],
their RAM is soldered on the motherboard and completely unmountable (and
thus immune). To ensure warm-boot attacks [47] (e.g., reading RAM content on

One-Time Programs Made Practical 663

the same computer by rebooting it with a USB stick) are also prevented, we
can set the Memory Overwrite Request (MOR) bit to signal the UEFI/BIOS
to wipe RAM on the next reboot before loading any system (cf. the official
TCG mitigation [44]). We do take into account the regular desktops/laptops
vulnerable to the cold-boot attack: For small-sized secrets like MK, existing
solutions [15,33,39,46] can be used, where CPU/GPU registers or cache memory
are used to store secrets. For larger secrets, like the key pairs/vendor input, we
perform block-wise processing so that at any time during the execution, only
a very small fraction is exposed. Also, as cold-boot attack is destructive, the
adversary will not learn enough to reveal the algorithm or reuse the key pairs.
At least, the vendor can always choose computers with soldered-down RAM.

(c) Attack cost. Bob may try to infer the protected function and vendor inputs
by trying different inputs in multiple instances. This attack may incur a high cost
as Bob will need to order the OTP from Alice several times. This is a limitation
of any offline OTP solution, which can only guarantee one query per box.

(d) Cryptographic attacks. The security of one-time programs (and garbled
circuits) is proven in the original paper [12] (updated after caveat [3]), so we do
not repeat the proofs here.

(e) Clonability. Silicon attacks on TPM can reveal secrets (including the
Endorsement Key), but chip imaging/decapping requires high-tech equipment.
Thus, cloning a TPM or extracting an original TPM’s identity/data to populate
a virtual TPM (vTPM) is considered unfeasible. Sealing achieves platform-state-
binding without attestation, so non-genuine environments (including vTPM) will
fail to unseal. We discuss TPM relay and SMM attacks in the full version of our
paper. Furthermore, there has been a recent software attack [18] that resets and
forges PCR values during S3 processing exploiting a TPM 2.0 flaw (SRTM) and a
software bug in tboot (DRTM). They (allegedly patched) do not pose a threat to
our OTP design, as neither SRTM nor any OS software (e.g., Linux) is involved,
not to mention our OTP does not support/involve any power management.

9 Concluding Remarks

Until now, one-time programs have been theoretical or required highly cus-
tomized/expensive hardware. We shift away from crypto-intensive approaches
to the emerging but time-tested trusted computing technologies, for a practical
and affordable realization of OTPs. With our proposed techniques, which we will
release publicly, anyone can build a one-time program today with off-the-shelf
devices that will execute quickly at a moderate cost. The cost of our proposed
hardware-based solution for a single genomic test can be further diluted by exten-
sion to support multiple tests and multiple clients on a single device (which our
current construction already does). The general methodology we provide can be
adapted to other trusted execution environments to satisfy various application
scenarios and optimize the performance/suitability for existing applications.

664 L. Zhao et al.

A Appendix

For space considerations, we also publish a full version [52] of this paper that
provides additional information as follows:

• More background helpful for understanding on one-time programs, garbled
circuits, and one-time memories;

• Discussion of an adaptive security attack on OTP systems;
• Detailed modifications we make to Battleship;
• Preprocessing steps for our case study application;
• Additional one-time program use cases;
• A list of the SNPs associated with BRCA1;
• Details of our genomic algorithm;
• Comments on porting efforts required for OTP; and
• Discussion of more attacks (e.g., SMM and TPM relay attacks).

References

1. Ayday, E., Raisaro, J.L., Laren, M., Jack, P., Fellay, J., Hubaux, J.P.: Privacy-
preserving computation of disease risk by using genomic, clinical, and environmen-
tal data. In: Proceedings of USENIX Security Workshop on Health Information
Technologies (HealthTech 2013). No. EPFL-CONF-187118 (2013)

2. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca:
efficient and secure testing of fully-sequenced human genomes. In: Proceedings of
the 18th ACM CCS 2011, pp. 691–702 (2011)

3. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 10

4. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software grand exposure: SGX cache attacks are practical. In: 11th USENIX Work-
shop on Offensive Technologies (WOOT 2017), Vancouver, BC (2017)

5. Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 344–360. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 20

6. Bulck, J.V., et al.: Foreshadow: extracting the keys to the Intel SGX kingdom
with transient out-of-order execution. In: USENIX Security Symposium, Balti-
more, MD, USA, pp. 991–1008 (2018)

7. Canim, M., Kantarcioglu, M., Malin, B.: Secure management of biomedical data
with cryptographic hardware. IEEE Trans. Inf Technol. Biomed. 16(1), 166–175
(2012)

8. Cariaso, M., Lennon, G.: SNPedia: a wiki supporting personal genome annotation,
interpretation and analysis (2010). http://www.SNPedia.com

9. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence, pp. 41–50. IEEE (1995)

10. Fisch, B.A., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: functional encryp-
tion using Intel SGX. Technical report, IACR eprint (2016)

11. Gnu.org: The multiboot specification (2009). http://www.gnu.org/software/grub/
manual/multiboot/multiboot.html

https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-642-40084-1_20
http://www.SNPedia.com
http://www.gnu.org/software/grub/manual/multiboot/multiboot.html
http://www.gnu.org/software/grub/manual/multiboot/multiboot.html

One-Time Programs Made Practical 665

12. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 3

13. Greene, J.: Intel R© trusted execution technology. Technical report (2012)
14. Greshake, B., Bayer, P.E., Rausch, H., Reda, J.: Opensnp-a crowdsourced web

resource for personal genomics. PLoS ONE 9(3), 1–9 (2014)
15. Guan, L., Lin, J., Luo, B., Jing, J.: Copker: computing with private keys without

RAM. In: NDSS, San Diego, CA, USA, February 2014
16. Gunupudi, V., Tate, S.R.: Generalized non-interactive oblivious transfer using

count-limited objects with applications to secure mobile agents. In: Tsudik, G.
(ed.) FC 2008. LNCS, vol. 5143, pp. 98–112. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85230-8 8

17. Halderman, J.A., et al.: Lest we remember: cold boot attacks on encryption keys.
In: USENIX Sec 2008, San Jose, CA, USA (2008)

18. Han, S., Shin, W., Park, J.H., Kim, H.: A bad dream: subverting trusted platform
module while you are sleeping. In: 27th USENIX Security Symposium (USENIX
Security 2018), Baltimore, MD, USA, pp. 1229–1246 (2018)

19. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. ISC. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14303-8

20. Intel Corporation: Trusted boot (tboot), version: 1.8.0 (2017). http://tboot.
sourceforge.net/

21. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Garbled circuits for
leakage-resilience: hardware implementation and evaluation of one-time programs.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 383–397.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 26

22. Jefferies, C.P.: How to identify user-upgradeable notebooks, June 2017. http://
www.notebookreview.com/feature/identify-user-upgradeable-notebooks/

23. Kantarcioglu, M., Jiang, W., Liu, Y., Malin, B.: A cryptographic approach to
securely share and query genomic sequences. IEEE Trans. Inf Technol. Biomed.
12(5), 606–617 (2008)

24. Kirkpatrick, M.S., Kerr, S., Bertino, E.: PUF ROKs: a hardware approach to read-
once keys. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, AsiaCCS 2011, Hong Kong, China, pp. 155–164
(2011)

25. Kitamura, T., Shinagawa, K., Nishide, T., Okamoto, E.: One-time programs with
cloud storage and its application to electronic money. In: APKC (2017)

26. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. CoRR (2018)
27. Kollenda, B., Koppe, P., Fyrbiak, M., Kison, C., Paar, C., Holz, T.: An exploratory

analysis of microcode as a building block for system defenses. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 1649–1666 (2018)

28. Koppe, P., et al.: Reverse engineering x86 processor microcode. In: 26th USENIX
Security Symposium (USENIX Security 2017), Vancouver, BC, pp. 1163–1180
(2017)

29. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-grained
control flow inside SGX enclaves with branch shadowing. In: 26th USENIX Security
Symposium (USENIX Security 2017), Vancouver, BC, pp. 557–574 (2017)

30. Lipp, M., et al.: Meltdown. CoRR (2018)
31. McCune, J.M.: Reducing the trusted computing base for applications on commod-

ity systems. Ph.D. thesis, Carnegie Mellon University (2009)

https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-540-85230-8_8
https://doi.org/10.1007/978-3-540-85230-8_8
https://doi.org/10.1007/978-3-642-14303-8
http://tboot.sourceforge.net/
http://tboot.sourceforge.net/
https://doi.org/10.1007/978-3-642-15031-9_26
http://www.notebookreview.com/feature/identify-user-upgradeable-notebooks/
http://www.notebookreview.com/feature/identify-user-upgradeable-notebooks/

666 L. Zhao et al.

32. Mood, B., Gupta, D., Carter, H., Butler, K., Traynor, P.: Frigate: a validated,
extensible, and efficient compiler and interpreter for secure computation. In: Euro-
SP (2016)

33. Müller, T., Freiling, F.C., Dewald, A.: TRESOR runs encryption securely outside
RAM. In: USENIX Security Symposium, San Francisco, CA, USA, August 2011

34. Naveed, M., et al.: Controlled functional encryption. In: CCS 2014, pp. 1280–1291.
ACM (2014)

35. Naveed, M., et al.: Privacy and security in the genomic era. In: CCS 2014 (2014)
36. nccgroup: Cachegrab, December 2017. https://github.com/nccgroup/cachegrab
37. Saint-Jean, F.: Java implementation of a single-database computationally symmet-

ric private information retrieval (cSPIR) protocol. Technical report, Yale University
Department of Computer Science (2005)

38. Sevinsky, R.: Funderbolt: Adventures in Thunderbolt DMA Attacks. Black Hat
USA (2013)

39. Simmons, P.: Security through Amnesia: a software-based solution to the cold boot
attack on disk encryption. In: ACSAC (2011)

40. Sottek, T.: NSA reportedly intercepting laptops purchased online to install spy
malware, December 2013. https://www.theverge.com/2013/12/29/5253226/nsa-
cia-fbi-laptop-usb-plant-spy

41. Strackx, R., Jacobs, B., Piessens, F.: ICE: a passive, high-speed, state-continuity
scheme. In: Proceedings of the 30th Annual Computer Security Applications Con-
ference, ACSAC 2014, New Orleans, Louisiana, USA, pp. 106–115 (2014)

42. Strackx, R., Piessens, F.: Ariadne: a minimal approach to state continuity. In:
25th USENIX Security Symposium (USENIX Sec 2016), Austin, TX, pp. 875–892
(2016)

43. Tarnovsky, C.: Attacking TPM part 2: a look at the ST19WP18 TPM device, July
2012. dEFCON presentation. https://www.defcon.org/html/links/dc-archives/dc-
20-archive.html

44. Trusted Computing Group: TCG Platform Reset Attack Mitigation Specification,
May 2008

45. Trusted Computing Group: Trusted Platform Module Main Specification, ver-
sion 1.2, revision 116 (2011). https://trustedcomputinggroup.org/tpm-main-
specification/

46. Vasiliadis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: PixelVault:
using GPUs for securing cryptographic operations. In: CCS 2014, Scottsdale, AZ,
USA, November 2014

47. Vidas, T.: Volatile memory acquisition via warm boot memory survivability. In:
43rd Hawaii International Conference on System Sciences, pp. 1–6, January 2010

48. Walsh, T., et al.: Detection of inherited mutations for breast and ovarian cancer
using genomic capture and massively parallel sequencing. Natl Acad. Sci. 107(28),
12629–12633 (2010)

49. Wang, X.S., Huang, Y., Zhao, Y., Tang, H., Wang, X., Bu, D.: Efficient genome-
wide, privacy-preserving similar patient query based on private edit distance. In:
CCS, pp. 492–503. ACM (2015)

50. Yao, A.C.: Protocols for secure computations. In: FOCS (1982)
51. Zhang, N., Sun, K., Shands, D., Lou, W., Hou, Y.T.: Truspy: cache side-channel

information leakage from the secure world on ARM devices. IACR Cryptology
ePrint Archive 2016, 980 (2016)

52. Zhao, L., et al.: One-time programs made practical (2019). http://arxiv.org/abs/
1907.00935

https://github.com/nccgroup/cachegrab
https://www.theverge.com/2013/12/29/5253226/nsa-cia-fbi-laptop-usb-plant-spy
https://www.theverge.com/2013/12/29/5253226/nsa-cia-fbi-laptop-usb-plant-spy
https://www.defcon.org/html/links/dc-archives/dc-20-archive.html
https://www.defcon.org/html/links/dc-archives/dc-20-archive.html
https://trustedcomputinggroup.org/tpm-main-specification/
https://trustedcomputinggroup.org/tpm-main-specification/
http://arxiv.org/abs/1907.00935
http://arxiv.org/abs/1907.00935

	One-Time Programs Made Practical
	1 Introduction
	2 Preliminaries
	2.1 One-Time Program Background
	2.2 Threat Model and Requirements
	2.3 Intel TXT and TPM

	3 Related Work
	4 System 1: TXT-Only
	4.1 TXT-Only Provisioning/Evaluation.

	5 System 2: GC-Based
	5.1 Implementation

	6 Case Study
	6.1 Genomic Test
	6.2 Construction for GC-Based
	6.3 Construction for TXT-only

	7 Performance Evaluation
	7.1 Benchmarking TXT-only
	7.2 Benchmarking GC-Based
	7.3 Analysis
	7.4 Another Use Case: Database Queries

	8 Security Analysis
	9 Concluding Remarks
	A Appendix
	References

