
Toward Cryptocurrency Lending

Mildred Chidinma Okoye1,2 and Jeremy Clark1(B)

1 Concordia University, Montreal, Canada
j.clark@concordia.ca
2 Deloitte, London, UK

Abstract. Lending has been posited as an application of blockchain tech-
nology but it has seen little real deployment. In this paper, we discuss the
roadblocks preventing the effortless lending of cryptocurrencies, and we
survey a number of possible paths forward. We then provide a novel sys-
tem, U. gw. o, consisting of experimental smart contracts written in Solidity
and deployed on Ethereum to demonstrate how a decentralized lending
infrastructure might be constructed.

1 Introductory Remarks

Lending has been posited as an application of blockchain technology but we
have seen little real deployment of lending. In Sect. 2, we discuss roadblocks and
possible paths forward. We do this in service of other researchers who might
want to look at this issue—we view our own contributions as an initial look and
not the final word in this complex area. We outline our agenda in a few steps:
(1) we review the role of lending in a modern economy, (2) we identify the key
tensions between cryptocurrencies like Bitcoin and Ethereum and lending, (3)
we review proposals for lending, and (4) we suggest how to move forward. In
Sect. 3, we present our lending infrastructure U. gw. o which incorporates the points
we discuss. U. gw. o is designed to be flexible and extensible; traditional fiat-based
lending is not one-size-fits-all and consists of a patchwork of loan structures,
instruments, and intermediaries. We show some basic types of loans and basic
types of risk mitigation as examples of what could be added to U. gw. o to support
an infrastructure for lending.

2 A Research Agenda for Cryptocurrency Lending

2.1 The Role of Lending in a Modern Economy

It is difficult to overstate the role of lending in a modern economy. Take, as
an illustrative example, the role of a central bank; one of the main national
institutes (along with the treasury) that cryptocurrencies aim to displace. First
and foremost, a central bank is an actual bank, providing accounts for its mem-
ber banks to deposit money and earn interest. Member banks provide interest-
earning accounts to the public. Interest is paid to the public because banks use
c© International Financial Cryptography Association 2019
A. Zohar et al. (Eds.): FC 2018 Workshops, LNCS 10958, pp. 367–380, 2019.
https://doi.org/10.1007/978-3-662-58820-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58820-8_25&domain=pdf
https://doi.org/10.1007/978-3-662-58820-8_25

368 M. C. Okoye and J. Clark

the deposited money to form loans. Because central bank interest rates are low,
banks prefer to lend to other banks any excess cash they hold at day’s end instead
of depositing them (other banks borrow to meet liquidity requirements). These
loans earn interest, and central banks target this specific lending rate when they
intervene in the economy. The most common intervention is the buying (circu-
lating new money) or selling (removing circulating money) of government bonds,
which are interest-earning loans from investors to the government. Central banks
will also provide loans (of ‘last resort’) to banks unable to secure loans from other
banks, typically during some sort of liquidity crisis. An economy without loans
would have no interest rates, no bonds, and essentially nothing for a modern
central bank to do.

2.2 Two Critical Issues for Lending with Cryptocurrencies

The crypto-economy is effectively an economy without loans. We identify two
primary roadblocks:

• Monetary instability. While a loan might be in anything of value, it is
typically done with money. Cash loans work best when the value of the money
is relatively stable. By contrast, cryptocurrencies have historically appreciated
in value over time (as of the time of writing). In a lending situation, this means
the cash taker will end up owing far more than he borrowed. If the scenario
were reversed and the currency depreciated rapidly, the cash provider would
prefer to spend the money rather than locking it up in a loan where it will
shed value over time. Even without long-term upward or downward drifts in
value, short-term volatility adds risk to a loan for both the cash taker and
the cash provider.

• Counter-party risk. While the hype surrounding blockchain technology
centers on how it can enable trustless financial systems, there is no way to
blockchain your way out of counter-party risk. If Alice truly lends money
to Bob—truly in the sense that Bob fully owns it and can do with it as he
pleases—then Bob can abscond with the money.

2.3 Existing Proposals

A number of companies have launched loan products or systems based on cryp-
tocurrencies. In the most common architecture, a central company arranges loans
and the loans are simply denominated in cryptocurrencies like Bitcoin. These
services vary from at interest bearing accounts to peer-to-peer lending for invest-
ment purposes to social justice orientations like mirco-lending for the unbanked
or the subprime market. As opposed to our system U. gw. o, these do use smart
contracts to structure the actual loans.

Toward Cryptocurrency Lending 369

2.4 Dealing with Monetary Instability

We summarize a few suggestions for adding stability to cryptocurrencies.

• The rate of release of new currency into the system could be modified to enable
new currency to be introduced at (i) a more insightful rate or (ii) based on
some internal metrics of the system like number of transactions. [Remark:
an insightful rate has been elusive despite many alt-coins customizing the
schedule and it is difficult to see how metrics could not be gamed].

• A cryptocurrency can also use explicit pegging but it is no better suited to
this system than standard currencies.

• A central bank could manage currency circulation while allowing other
aspects to be decentralized [4]. [Remark: Central banks have been histori-
cally unsuccessful at using money circulation as a target [7]].

• The loan could be use the cryptocurrency as the medium of exchange but use
a stable (e.g., government) currency as the unit of account.

Fig. 1. Standard approaches to dealing with counter-party risk.

In U. gw. o, we use the last approach. In other words, a loan could be $100 USD
paid in Ether at the exchange rate at loan time and repaid 3 months later at
$110 USD paid in Ether at the new exchange rate. This approach requires the
smart contract to be aware of the exchange rate which introduces a trusted third
party, called an oracle [11] and is discussed further in the next section.

2.5 Dealing with Counter-Party Risk

In Fig. 1, we outline the basic approaches from finance for dealing with counter-
party risk.

• Full Collateral: It is common for Bitcoin-based solutions, e.g., for fair
exchange [1,3,10] or payment channels [5,9], to deal with counter-party risk
by requiring full collateral. This is a simple approach but one unlikely to scale
to an entire economy: economic actors are chagrinned to leave money where
it earns no interest and economic benefit.

370 M. C. Okoye and J. Clark

• Repurchase Agreement: A loan collateralized fully with same currency as the
loan is not a loan therefore collateral only works if it is something different of
the same value. If this something is on-blockchain (say a token representing
something of value), the cash provider can have the collateral sit locked up
in escrow (where it benefits neither the cash provider or taker) or could take
full ownership of the collateral with the promise of returning it when the
loan is repaid. This is a repurchase agreement and is common when the cash
provider is perceived to be at less risk of absconding than the cash taker.

• Partial Collateral: The cash taker might stake something of lesser value than
the loan in collateral, a third party to a loan might use partial collateral to
insure a loan (see below), or sometimes loans are internal to a system such as
leveraged positions in financial markets where the manager can liquidate the
loan if the partial collateral (margin) dissipates due to market conditions.

• Reputation: A more abstract form of collateral is one’s reputation and lend-
ing history. The difficulty with reputation is that it requires strong identities,
something missing from decentralized currencies, as rogue entities can regen-
erate a new identity if the reputation of their old identity suffers and they can
generate fake histories by lending to themselves with fake identities. These
are not impossible to address but are difficulties.

• Insurance: Consider the case where Alice lends to Bob and does not trust
him. If Alice trusts Carol and Carol trusts Bob, then Carol could insure the
loan. Of course, Carol in this case could also just lend the money to Bob but
there are a few scenarios where she might let Alice lend the money. One is
if Carol’s assets are not liquid. A second is that Carol might employ partial
collateral: she could insure 100 loans of similar value but only stake 10% of the
lent money as a margin against defaults. This costs her less than making the
loans herself, and provides the cash providers insurance assuming the default
rate is less than 10%. One standard financial instrument to implement this
type of insurance, with some additional complexities discussed later, is a
credit default swap (CDS).

3 The U. gw. o Lending Infrastructure

U. gw. o is an extensible system of smart contracts to enable different types of
lending on Ethereum.1 It is centred around recording credit events—when a
party fails to fulfill the terms written in a loan contract—in a common ledger
called a Credit Event object. We considered two implementation approaches:

• Internal Variable. In one approach, a loan has a credit event object within
itself where the credit event is a variable contained within the loan contract.
The issue with this approach is one of encapsulation: any external contract
protecting the loan (via insurance or collateral) would have to reach inside
the loan object when all it needs to know to function is whether a credit event
occurred or not.

1 https://github.com/MildredOkoye/Ugwo.

https://github.com/MildredOkoye/Ugwo

Toward Cryptocurrency Lending 371

• Object Oriented Approach. It would be interesting if the Credit Event object
sat at its own address such that protection contracts could be externally
deployed and would not have to be worried about each loan that they insure
individually. Protection would be external contracts and would just have a
global view of all credit events from a single address given specific loan identi-
fier (such as the loan address). To ensure compatibility, we can use interfaces
which in object oriented programming specify the functions that must exist.
Interfaces are similar to abstract classes in that they do not have any defini-
tion of functions contained within. An interface provides developers a guide
as to how to implement the contract. Thus the Credit Event object is the core
of extendable system where new loan types can be added and new protection
types.

Fig. 2. The U. gw. o lending infrastructure showing how the various loan and protection
objects interface with the Credit Event object.

In U. gw. o, we implement two interfaces: a Loan interface and Protection Inter-
face. The Loan interface forces any loan object that would like to interact with
the Credit Event object to implement certain functions that would enable the
interaction. This same concept applies for the Protection Interface. These inter-
faces and their links to the loan objects are shown in Fig. 2.

3.1 Overview of Loan Objects

Peer to Peer Lending. We start with a basic loan contract constructed by the
cash provider. The loan has parameters such as the address of the cash provider
and cash taker, the principal amount to be lent, the start and end dates of the
loan, the repay value and repay schedule. The cash provider runs the constructor
and funds the contract. The cash taker runs a function in the loan contract to
retrieve the principal in the contract. At maturity, the borrower calls a function

372 M. C. Okoye and J. Clark

to pay back the principal with the corresponding interest. As with all of our
objects, modifiers ensure that only the stated party can run each a function in a
contract, and an internal state machine governs at which phase of the contract
each function can be called. If the borrower does not show up to retrieve the
principal from the contract, the lender’s money would remain the loan contract
forever. To combat this, a kill function was implemented such that the lender
can retrieve the money from the contract if the borrower does not retrieved the
money after a timeout.

If the cash taker fails to pay back the loan within the timeframe, the loan
object itself cannot transition states without someone calling a function. In
U. gw. o, a default function can be triggered by any person watching or monitoring
the loan if the borrower fails to pay after the due term. This default function
when run, updates the Credit Event object discussed below. This is how a loan
moves into a default state and it relies one someone having an incentive to tran-
sition the loan (otherwise it is likely inconsequential if it sits dormant).

Bonds and Commercial Paper. We implement a simple ‘zero coupon’ bond.
The contract uses an external library implementing EIP20 tokens.2 The cash
taker, generally an organization or corporation in this case, creates a set of tokens
that represent units of cash it will accept (and later repay) from individual cash
providers. The cash taker runs the constructor (with variables for start date,
end date, bond value, repay value, etc.) and funds the contract with tokens. A
function is used to accept payment from investors where tokens representing the
amount borrowed is sent to the investors. The token is calculated as the value
deposited over the price of the bond. An event is created that informs watchers
of the contract of all bonds sold. The bond is a bearer bond in the sense that
the bond contract does not track the addresses of who owns each bond. The
token can be transferred from one person to another without interacting with
the bond contract (however, the interaction is performed with the standard
token contract). To get paid at maturity, only the token needs to be submitted
irrespective of the bearer of the token. Defaults are implemented the same as in
the P2P lending contract. The default function can be triggered by any person
watching or monitoring the bond if the organization defaults on its payment
after the due term.

3.2 Overview of Protection Objects

Collateral. Two types of collateral are defined in U. gw. o—a token collateral and
an ether collateral. A token collateral contract accepts a EIP20 token which
might represent a token from a ICO, DAO-style contract, loan contract or any-
thing else with value that the cash provider is willing to accept. The constructor
function of the contract states the amount of tokens the cash taker is willing to
put up as collateral. A separate function allows the cash taker to instantiate all
agreements with the cash provider; they were not included in the constructor
2 https://github.com/ConsenSys/Tokens.

https://github.com/ConsenSys/Tokens

Toward Cryptocurrency Lending 373

function to allow the collateral function to be run by any investor. If at the end
of the term the cash taker defaults, a function to get the token out of escrow
can be run by the cash provider. The function first checks for a credit event, or
triggers a credit event if the conditions for a default are met. An ether collateral
accepts ether as collateral—since the loan itself is in Ether, this is useful for par-
tial collateral functions or when the collateral is backing insurance rather than
a loan.

Credit Default Swaps. A credit default swap (CDS) is an agreement between
two parties (a seller and a buyer) where the CDS seller fulfils the debt of a loan
to the CDS buyer if a credit event occurs on the loan. The CDS seller then takes
ownership of the loan. If more there is more than one seller of a CDS per loan
(as is permitted and common in financial markets for speculation), the loan is
auctioned and the market clearing price is used to settle the swaps.3 A CDS
seller subsumes the same risk position as the actual cash provider in the loan
but the benefit to the CDS seller is not having to liquidate any assets (she can
have effectively no cash on hand if an event never happens). The benefit to the
cash provider is that a loan with a CDS only defaults if both the cash taker and
the CDS seller default.

CDSs have a bad reputation after the 2008 financial crisis in the United
States, where the CDS market was unlit and considered by many to be under-
regulated. In U. gw. o, the CDS market is transparent and CDS buyers can have
enforced reserves that automatically settle with CDS buyers when a credit event
occurs on an insured loan. CDS sellers themselves an be given a Credit Event
object. Our implementation is rudimentary (without naked CDSes, auctions,
or other features) and we expect that a full-fledged, decentralized CDS market
would constitute an entire research paper by itself.

3.3 Overview of the CreditEvent Object

It would be simpler to implement a CreditEvent object within each loan (P2P or
Bond) contract. One reason to pull it out and make it an object of its own is to
prevent redundancy in the use of code. This is a basic principle of object oriented
programming. Another reason is to create a somewhat central place where all
the loans can be monitored.

The simplest model of a CreditEvent object begins with a contract that holds
all default variables such as defaulter’s address, the lender’s address and the
defaulted amount. It implements a struct variable that is used to hold all the
values pertaining to each loan. The contract implements the zero coupon pay-
ment model and hence has only one value for defaults. The value of the defaults
could either be a string (yes or no) or a number (the amount defaulted). This
contract has a constructor that is triggered by a loan contract. The major task
of the constructor is to allocate memory for the loan that triggered it and set
the necessary parameters (defaulter’s address, the lender’s address). An update
3 http://www2.isda.org/.

http://www2.isda.org/

374 M. C. Okoye and J. Clark

function within the CreditEvent contract is triggered by loans to insert default
value into the struct variable. A defaultlist function acts as a getter function
and returns all the values within the contract. This contract by itself performs
no specific action beside receiving information from loans linked to it and acting
as a global table visible to different protection objects and users.

In U. gw. o, each loan’s constructor triggers the CreditEvent function to insert
arguments such as the lender’s and debtor’s address. A payback function con-
tained within the loan is triggered by the debtor in other to pay back the principal
and interest. It takes into factor the state of the contract as well as the matu-
rity date of the loan. If the amount being paid by the debtor is less than the
total amount (principal and interest), the amount is paid to the cash provider
and a default written to the CreditEvent contract. A value of zero is written if
the amount being paid covers the total amount or is in excess (in this case, the
surplus is returned to the cash taker). A report function can be triggered by
anyone watching the contract if the borrower defaults on its loan. This would
set the loan to a default state such that anyone watching the loan can tell that
the borrower defaulted on the loan.

4 Discussion

4.1 Exploring the Use of Oracles for Exchange Rates

It is not uncommon to encounter use cases that require a smart contract to
trigger or change state in response to an event external to the blockchain. For
example, an insurance contract might pay farmers based on the temperature and
sunlight for a given period. A hypothetical smart contract might listen for any
change in the weather, parse this information from an external source such as
a URL, and then trigger payments or other events based on this information.
As simple as this contract might sound, it is not possible to run contracts on
Ethereum this way. This is because the blockchain follows a consensus-based
model that ensures all inputs can be validated. Externally fetched data might
differ between nodes, some nodes may not be able to access the data due to
networking issues, and the amount of gas that should be consumed by the miner
for spending time fetching the data is difficult to determine objectively.

In the case of our lending infrastructure, we want to implement a loan where
the unit of account for the loan is based on the value of a fiat currency. The actual
loan will be in Ether but the amount owed will be based on its current exchange
rate with the underlying currency. This is side-step the monetary instability
of Ether which makes it unattractive for lending. Thus in nominal terms, the
amount of ether being paid back might be more or less than the amount borrowed
depending on whether it’s value increased or decreased relative to the fiat dollar.
Bonds do not only offer an investment opportunity, but they allow investors to
speculate or hedge on rates of inflation.

Toward Cryptocurrency Lending 375

Since contracts cannot fetch external data, a service has emerged, called an
oracle, which is trusted external entity that puts data onto the blockchain where
it can be accessed by other contracts. In U. gw. o, we use Oraclize4 to feed the
exchange rate of Ether with USD into our contracts. Using an oracle is not
foolproof and we note a few challenges in using an oracle. The first challenge
is that the price is needed at each execution of the contract. Another challenge
is that in order to feed the current exchange value into the blockchain, a link
to any exchange has to be manually inserted into the oracle’s code; if the link
goes down, the oracle will not be able to provide the appropriate data into the
blockchain to be used by the miners. Finally oracles are trusted parties that
can lie about the exchange rate and collude with cash takers to steal from cash
providers. We remark that oracles do have a reputation and in most countries,
stealing is still subject to legal recourse even if it is on a blockchain.

4.2 Automatic Actions

Many Ethereum beginners have to adjust their mental model of smart contracts
to the fact that a contract will not run unless if one of its functions is called. It
cannot automatically perform actions, say, after some period of time has passed.
In U. gw. o, loans like bonds have a default function that checks if there has been a
default by the cash taker. This default function has to be triggered by someone
in order to default the loan and update the CreditEvent object. An option is to
use the Ethereum Alarm Clock5 to trigger the function monthly. It is a trusted
third party service that supports scheduling of transactions such that they can be
executed at a later time on the Ethereum blockchain. This is done by providing
all of the details for the transaction to be sent, an up-front payment for gas
costs, which would allow your transaction to be executed on ones’ behalf at a
later time. The drawback is its heavy integration with the loan contract, as well
as arranging payments to the service. Would it be possible for an actor in the
loan contract to run the function monthly in other to avoid the heavy integration
and cost of using the Ethereum alarm clock? Which actor in the loan contract
would have a higher incentive to run the default function? All answers point
towards the cash provider. Due to the fact that the insurance or collateral can
only be claimed after a default occurs, the cash provider in the contract would
have more incentive to run the function every month. Hence, we did not deploy
the alarm clock.

4.3 Implementing the Monthly Array Object

To implement a monthly payment, we could reference either time (e.g., now or
block.timestamp) or block interval (e.g., block.number). Timestamps are not
reliable and be manipulated by miners. This is due to the decentralization of the
system; there is no wall clock for reference and node’s local clocks can never be

4 https://github.com/oraclize.
5 http://www.ethereum-alarm-clock.com/.

https://github.com/oraclize
http://www.ethereum-alarm-clock.com/

376 M. C. Okoye and J. Clark

perfectly synchronized (i.e., to the millisecond). Ethereum permits a 900 ms lead
or lag in time. When using block numbers, there is also a lack of precision. One
could estimate that a 31 day month would be something like 179 759 blocks.6

While this is a challenge for applications that need near real-time fidelity but
for loan payments, we would argue that time slippage is not critical for loans.
We utilize time not blocks. If a loan lies dormant for longer than a month, with
Ethereum’s model of function-initiated state changes, the loan’s state will not
change. However the next function to be called, whether a payment or default
check, will update the previously skipped months in CreditEvent while writing
the current result of the called function.

4.4 Implementing the CreditEvent Contract

Choosing an appropriate data structure for CreditEvent presented some chal-
lenges. We want loans to be individually encapsulated with the addresses of the
cash provider and cash taker, and some data structure to hold a credit score
for the loan (such as an array of values that indicate for each month whether
the payment was repaid, late, defaulted, etc.). Note that it is not up to the
CreditEvent object to penalize credit events. It passively records them and then
protection objects can chose how to act. CreditEvent should be agnostic of what
type of loan it is representing (e.g., peer-to-peer, bond, etc.). In U. gw. o, each bond
is an individual loan. Protection objects, like credit default swaps, are generally
written to monitor credit events across the entire issue of bonds, not just one
individual bond. We leave for future work improvements to how sets of loans
can be insured.

This credit history could be a struct, mapping or array. According to solidity
documentation, in order to restrict the size of a struct, a struct is prevented from
containing a member of its own type. However, the struct can itself be the value
type of a mapping member. Following that, another way is to have a mapping to
another struct outside of itself that contains the monthly defaults. In Solidity,
mappings are like hash tables that are initialized dynamically with key/value
pairs. Unmapped keys return an all zero byte-representation. However, it is not
possible to iterate through the contents of a mapping and therefore, the best
implementation was to have an array contained within a struct. In all cases, the
inner container cannot be visible within the interface of the Ethereum wallet even
if the outside container is made public. For example, if you implement a struct
inside another struct and on, eventually the interface would give up trying to
display all the subviews within it. To make the contract more developer friendly,
we use getter functions to reach inside structs and expose the contents to the
wallet interface.

In other to uniquely identify loans in the CreditEvent contract, when a loan
calls the CreditEvent contract to pass in the initial parameters, a loan id number
is created by the CreditEvent contract. This loan id number can be used by a
protection object to monitor a loan. Using a loan id number creates an extra

6 Blocks 4652926 to 4832685 were mined in December 2017.

Toward Cryptocurrency Lending 377

variable that floats around the contract that might not necessarily be needed.
A better approach is to use the loan address as a unique identifier. This way
the protection object do not need to keep the loan id number of every loan
they monitor as the address of the loan by itself serves as a unique identifier.
This however, is not a hard rule as either a loan ID number or address can be
used to uniquely identify a loan without causing any mishap in general. Even in
situations where two loans are created at the same time, the id of the loans is set
by the miner in the order in which they are place within the block. The interface
of the Ethereum wallet for the CreditEvent object contains the parameters for
identifying each loan on the CreditEvent object. The loan address is used to
retrieve this information. The months which have no default are represented
with zero and 300000000000000000 wei (0.3 ether) is the default amount for the
second month. To pay out this default, any protection object would just need to
fetch the value from the CreditEvent object.

4.5 Implementing a Credit Default Swap

A way to address counter party risk, without solving it, is to have a third party
provide insurance on a loan. Such a contract is both a protection object and also
introduces a new counter-party risk: that the insurer will default on paying the
insurance if a credit event occurs. We implement a very simple CDS contract. The
basic CDS contract is drawn up by the insurance seller who initializes agreed
upon facts such as the CDS buyer, amount to be insured, premium, among
others. During the payment by the CDS buyer, the function allocates space in
the CreditEvent object to hold information regarding the standings of payments
made to the CDS buyer.

If a default occurs on a loan that has been insured with a CDS, the default
function would be run by the CDS buyer (the buyer has a higher stake and
more incentive to run the function). This function would update the CreditEvent
object with the balance of the loan to be paid. This is because when a default
occurs, the rest of the debt is paid to the CDS buyer and the CDS seller takes
over the loan (this is where the swap occurs). The idea behind this is that we
wanted the CDS contract to fetch the balance of the debt directly from the
CreditEvent object just as the Collateral object gets the default for the month
from the CreditEvent object and pays out to the cash provider. This way the
amount to be paid cannot be manipulated by either the CDS seller or anyone
and the payment can be made automatically when triggered.

When the payment is made to the CDS buyer, a change of ownership occurs.
This could be implemented in two ways. One way is to have a new contract
created for the change of ownership where the CDS seller becomes the Lender in
the loan contract. This would create a new contract which might be hard to track
as it would have a new address with no relation to the old address. The other
way, which we implemented, is to have the same loan contract implemented for
the CDS change the owner name. This way the new owner (CDS seller) is tied
to the loan contract and anyone who had the address for watching the CDS loan
would be aware that a credit swap occurred. The change of ownership is also
reflected in the CreditEvent object.

378 M. C. Okoye and J. Clark

5 Evaluation

Our contracts were developed in Remix and tested on Ethereum’s test network.

Table 1. Cost of running the basic and loan contracts

Contract Gas Ether USD

Base System

Tokens 857,106 0.018 $5.00

Token Transfer 51,501 0.001 $0.30

Oraclized 154,711 0.003 $0.90

Credit Score 462,453 0.010 $2.70

Peer to Peer Lending

P2P Lending 2,198,423 0.046 $12.82

Receive Money 474,112 0.009 $2.77

Payback 105,827 0.002 $0.62

Report Default 60,605 0.001 $0.35

Kill 25,098 0.001 $0.12

Bond

Bond 2,229,084 0.047 $13.00

Purchase Bond 231,397 0.005 $1.35

Withdraw 292,787 0.006 $1.71

Repay 415,213 0.009 $2.42

Report Default 55,798 0.001 $0.33

5.1 Security

Solidity (and Serpent) is notorious for security issues [2,6,8]. We made our con-
tract resilient to the re-entrancy bug by ensuring that all checks are performed
before transfers (such as, does the sender have enough ether?) and also ensuring
that state variables are changed before transfers. Mishandled exceptions have the
potential to allow unauthorized access to functions or result in denial of service
attacks on individual smart contracts. We handle this in our contracts with the
use of modifier functions that act as an access control mechanism. This allows
only authorized users to access functions and also sanitizes inputs to reduce
the likelihood of exceptions. Transaction-ordering dependence and timestamp
dependence attacks do not break our contract due to the nature of our project.
Although timestamps (as opposed to block numbers) are used in our project,
our contract is not time dependent and any modification of the time by factor
of 900 s by the miner will not break the contract. Last, the price for a bond in
our system is fixed by the bond issuer and cannot be changed after deployment.
Therefore, the contracts are not susceptible to a transaction ordering attacks.

Toward Cryptocurrency Lending 379

Table 2. Cost of running the protection contracts

Contract Gas Ether USD

Collateral

Collateral 442,035 0.009 $2.58

Serve 204,509 0.004 $1.20

Get Ownership 312,667 0.007 $1.82

Cancel 27,664 0.001 $0.16

Credit Default Swap

CDS Contract 452,035 0.009 $2.58

Monthly Premium 204,509 0.004 $1.20

Report Default 61,709 0.001 $0.16

Kill 27,664 0.001 $0.16

In order to test our system for known security bugs, we use a symbolic exe-
cution tool called Oyente [8].7 The tool has been proved in successfully identi-
fying critical security vulnerability, such as a famous incident called the DAO
vulnerability. The various APIs used by both contracts were analyzed together
simulating the exact same way it would be deployed. None are vulnerable to any
of the tests.

5.2 Cost

In this section we would analyze the gas cost of using our contracts. As of
this writing, the current price per gas is 21 gwei (0.000000021 Ether) while the
current price of 1 ether = $277.78. For any contract, the gas cost = gas * gas
price. As of this writing, it is useful to note that any transfer of ether from one
account to another has a gas of 21,000, a gas cost of 0.00044 Ether resulting
to $0.12 USD. Tables 1 and 2 represent the cost of running each smart contract
and its functions contained therein on the Ethereum Virtual Machine. The cost
of deploying the P2P lending contract and the Bond contract is roughly about
$13.00 respectively. This is due to the API’s called by those contracts, the more
API’s a contract import the more the code needed to be executed by the miners
and the higher the gas consumption. In particular, the high gas consumption is
attributed to the Oraclized API. However, once deployed, the cost of running
the rest of the function inside the contract is less than $3.00.

5.3 Concluding Remarks

We have present U. gw. o, an Ethereum implementation of a lending infrastructure.
We use the term infrastructure because U. gw. o is not a single system, but rather
a central component (CreditEvent) with two interfaces for an extensible system,

7 https://github.com/ethereum/oyente.

https://github.com/ethereum/oyente

380 M. C. Okoye and J. Clark

where new loan and loan protection techniques can be added. Future work might
deploy more exotic bonds or commercial paper arrangements, or other types of
protection techniques like reputation systems and repurchase agreements.

Acknowledgements. J. Clark acknowledges funding for this work from NSERC and
FQRNT.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure mul-
tiparty computations on Bitcoin. In: IEEE Symposium on Security and Privacy
(2014)

2. Atzei,N., Bartoletti,M.,Cimoli, T.:A survey of attacks onEthereumsmart contracts
(SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 8

3. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

4. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: NDSS (2015)
5. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin

duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

6. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K.
(eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4 6

7. Latter, T.: The choice of exchange rate regime. In: Centre for Central Banking
Studies, vol. 2. Bank of England (1996)

8. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: CCS (2016)

9. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments. Technical report (draft) (2015). https://lightning.network

10. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: Penalizing equivocation
by loss of Bitcoins. In: CCS (2015)

11. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenti-
cated data feed for smart contracts. In: CCS (2016)

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
https://lightning.network

	Toward Cryptocurrency Lending
	1 Introductory Remarks
	2 A Research Agenda for Cryptocurrency Lending
	2.1 The Role of Lending in a Modern Economy
	2.2 Two Critical Issues for Lending with Cryptocurrencies
	2.3 Existing Proposals
	2.4 Dealing with Monetary Instability
	2.5 Dealing with Counter-Party Risk

	3 The Ụgẉo Lending Infrastructure
	3.1 Overview of Loan Objects
	3.2 Overview of Protection Objects
	3.3 Overview of the CreditEvent Object

	4 Discussion
	4.1 Exploring the Use of Oracles for Exchange Rates
	4.2 Automatic Actions
	4.3 Implementing the Monthly Array Object
	4.4 Implementing the CreditEvent Contract
	4.5 Implementing a Credit Default Swap

	5 Evaluation
	5.1 Security
	5.2 Cost
	5.3 Concluding Remarks

	References

