
On the Feasibility of Decentralized
Derivatives Markets

Shayan Eskandari1, Jeremy Clark2(B), Vignesh Sundaresan1, and Moe Adham1

1 Bitaccess, Ottawa, Canada
2 Concordia University, Montreal, Canada

j.clark@concordia.ca

Abstract. In this paper, we present Velocity, a decentralized market
deployed on Ethereum for trading a custom type of derivative option. To
enable the smart contract to work, we also implement a price fetching
tool called PriceGeth. We present this as a case study, noting challenges
in development of the system that might be of independent interest to
whose working on smart contract implementations. We also apply recent
academic results on the security of the Solidity smart contract language
in validating our code’s security. Finally, we discuss more generally the
use of smart contracts in modelling financial derivatives.

1 Introductory Remarks

The introduction of Bitcoin [9] in 2009 led to a new frontier in decentralizing
technologies, both in finance and elsewhere. Of the many implementations, we
note a few: file systems like The InterPlanetary File System (IPFS) [2], dynamic
name servers like DNSChain [13] and MaidSafe, a fully distributed platform
[6]. For our purposes, the most interesting technology is Ethereum [4,11]—a
decentralized general transaction ledger. Ethereum in simple words is a decen-
tralized computer that can run code, called smart contracts, which enforce the
performance of an agreed upon set of negotiated standards in an automated and
immutable way. Smart contracts can be designed to disintermediate traditional
trusted parties, replacing them with pre-defined logical parameters. The smart
contract concept is not new and was introduced by Szabo in 1997 [10], however
there has not been any real implementation of it until Bitcoin, and then in a
much more flexible and verbose fashion: Ethereum.

Under the umbrella of “fintech”, “blockchain”, and “distributed ledger tech-
nology”, many legacy entities in the financial world (investment banks, security
exchanges, clearinghouses, etc.) have expressed interest (through whitepapers
and commercial partnerships and consortiums) in decentralizing financial mar-
kets. Derivative markets are often cited as a potential target. From the other
end, papers on Ethereum and tutorials on Solidity (a high level programming
language for Ethereum) often use derivatives as an example application. So there
is a degree of consensus that derivatives running on Ethereum is an interesting
application to study, but we are not aware of any public projects to attempt
to build a derivative market in a serious way. This paper is a first step in that
direction.
c© International Financial Cryptography Association 2017
M. Brenner et al. (Eds.): FC 2017 Workshops 2017, LNCS 10323, pp. 553–567, 2017.
https://doi.org/10.1007/978-3-319-70278-0_35

554 S. Eskandari et al.

1.1 Scope and Contributions

A simplification of a derivative is as follows: two parties enter an agreement where
the first stands to profit if a specified security (e.g., stock) appreciates in value
over a specified time-period and the second stands to profit if it falls. Since the
profitability of the agreement is derived directly from the price of the security, it
is called a derivative instrument. The exact operational details that realize this
property differs between types of derivatives. The most common derivative is a
put/call option which gives the second party (called the buyer) the opportunity
(but not obligation) to buy/sell a security at a specified price (strike price) at
(American) or within (European) a specified time (expiration). The buyer pays
the first party (the seller) a flat fee (option price) when purchasing the option.
Derivatives are generally held to hedge risks in price movements or for speculation.

In a decentralized derivative system, a buyer and seller can have fast and
automatic clearing and settlement (straight through processing) of the derivative
without trusting a third party. However the design of a market must consider
the following challenges:

1. Terms of the Contract. The terms of derivative must be expressible in the
smart contract language. In this paper, we write contracts in Solidity for the
Ethereum blockchain which is sufficient for describing the core aspects of the
contract. We present a full implementation stack (from the smart contracts to
a UI) for buying/selling a special type of derivative instrument. We pay special
attention to common security risks in developing Solidity-based contracts.

2. Counterparty Risk. In most derivatives, the seller is obliged to buy/sell
securities upon request of the buyer subject to the terms of the derivative.
A seller might choose to not follow through with her obligations. In a cen-
tralized setting, identity, reputation and legal recourse are used to combat
this. In a decentralized environment, this problem must be addressed. In this
paper (and the reason we position it as a first step), we start with derivatives
that are fully collateralized—meaning the full settlement amount under all
outcomes is capped and this amount is locked to the contract at initiation
time and distributed under the conditions of the contract. This means we do
not implement a traditional put/call option but rather a tweaked version we
describe below. In future work, we will consider counterparty risk broadly
and how mitigating it can be combined with our framework to offer more
traditional derivatives.

3. Price Feed. In a derivative where settlement is fully automated, either the
underlying security (or a token representing it) needs to be on the blockchain
already or the blockchain needs to be able to assign a value to the security—
or more precisely, be fed the price it should use in evaluating the code of the
contract. In practice, an entity feeding prices (or any external information)
into a smart contract is called an oracle. Some related work has examined ora-
cles, and we present our decentralized design in Subsect. 4.2 called PriceGeth,
which we have made freely available.1

1 https://github.com/VelocityMarket/pricegeth.

https://github.com/VelocityMarket/pricegeth

On the Feasibility of Decentralized Derivatives Markets 555

4. Underlying Financial Model. The buyer and seller of a derivative, whether
implicitly or explicitly, must have some sense of what the probabilistic behav-
iour of the underlying security must be to determine the terms of the contract.
This is the purpose of the infamous Nobel-awarded Black-Scholes model for
stock prices—now obsolete but influential for decades. In our system, such a
model is not baked into the functioning of the smart contract but would be
used externally to decide favourable terms before buying/selling derivatives.
For stocks, modern models (like jump-diffusion) might be used. For deriva-
tives on cryptocurrencies or more esoteric securities, models simply do not
exist yet and are an open area of research. Finally, we note that the derivative
ultimately settles in Ether and so inflations/deflation of the currency might
erode an otherwise profitable derivative.

In summary, we limit our contributions to (1) and (3) in this work, but also
propose this fuller landscape as a useful research agenda for future researchers.

2 Related Work

Work on trusted oracles and price feeds, in the Ethereum eco-system, include
TownCrier [12] which acts as an attested bridge (running within an SGX enclave)
between trusted sources of information and the Ethereum blockchain. Oraclizeit2

is another price feed which uses the similar workflow to fetch the requested
information. Our approach differs from these as PriceGeth publishes the data
to the Ethereum blockchain from the trusted source of information and the
historical data is available to all smart contracts, however in comparison with
the other approaches, is limited to only the published data (Price pairs).

Equibit [7] proposes a method to issue, create, disseminate and maintain
equity across a broad base of investors without the need of intermediaries for
record keeping. It is conceivable that derivative smart-contracts could utilize
Equibit equity as payment or settlement method, as opposed to simply using
Bitcoin or Ethereum’s native digital currencies.

Bentov et al. [3] note than an extension to their work on decentralized pre-
diction markets can be a derivative instruments they call a capped contracts for
difference. It is similar to the one implemented in Velocity (their paper is not an
implementation but a study of game theoretic properties).

Recent attacks on smart-contracts, such as TheDAO attack [14] attracted
security researchers to analyze further on this era. Solidity security and survey
of the attacks by Atzei et al. [1] lists some of the known security vulnerabilities
and Luu et al. Developed a tool for static analysis on smart contract codes [8]
which we used.

3 Materials and Methods

Smart Contracts. A contract is a written or spoken agreement between two or
more parties that is intended to be enforceable by law. In a smart contract,
2 http://www.oraclize.it/.

http://www.oraclize.it/

556 S. Eskandari et al.

terms are written in code and executed by machines, removing the human per-
formance component (unless if such a component is specified). We can consider
our main smart contract as a black box: the inputs are investors’ deposited ether
(Ethereum’s cash) and their position on the future price of an asset, either short
or long. The smart contract will retain the deposit in escrow and execute a pay-
out calculation and the payout itself when the expiry date comes. The payout
is in Ether only, no actual shares are exchanged (a contract for difference) and
the maximum payout is capped (limit up/down). Due to the deposit, there is no
counter-party risk however the contract requires a trustworthy price feed and the
investors earn zero interest for the duration of the contract. For this reason, we
consider this a first step toward more flexible arrangements. The contract dis-
intermediates the trusted role of the exchange (or broker for over-the-counter)
and settling/clearing entities.

Types of Options. We implement a non-standard option that is similar to a
collar or hedge wrapper. It is non-standard due to our requirement of escrow-
ing money, which we make to side-step counter-party risk and enable a fully
autonomous and disintermediated contract. The contract collects funds from
the hedgers/speculators who take opposing positions on the future prospects of
an asset: one takes the short position when they believe the underlying asset’s
value will lose value from its current price, and other takes the opposite long
position speculating a rise in the price. In its simplest form, the collar options
pay out $1 for every $1 change in the underlying asset (the payout can be made
dependent on a drift term or even made non-linear). The payout is limited by
the amount of money held in escrow—if the price rises beyond the limit, it is
said to be limit up (or limit down in the opposite case) and the payout will be
fixed (see Fig. 1). This kind of payout capping helps the contract holders stay
immune to systemic risks and extreme jumps.

Development and Deployment. There are a few blockchains that would let us
code an autonomous smart contracts: Ethereum, RSK [15] and more. The deci-
sion to work on Ethereum blockchain rather than others solely came from the

Fig. 1. Our collar-esque option with maximum long payout scenario. K1 is the initial
price, K2 is the price at expiry time and R is the pre-defined collar for payouts

On the Feasibility of Decentralized Derivatives Markets 557

fact that there are more active developers in the community and maturity of the
platform. Even though Ethereum is in early stages, it is more mature than other
smart contract compatible platforms. The programming language used for smart
contract development is Solidity in most of these platforms. All smart contracts
developed and used in this paper has been deployed and tested by our beta
testers on Ethereum testnet. In Ethereum blockchain, transactions and process-
ing power costs some small amount of ether called gas3. For each transaction,
the sender defines the gasLimit and also gasPrice for processing that transaction
and miners decide to include those transactions in the blocks they mine or not.
The concept of gas has many angles to discuss which falls outside of the scope
of this paper. We will discuss some more in Sect. 5.

4 Implementation

We call our platform Velocity. We tried to model the real-life scenario of buying
an options derivatives. Consider the case where Alice goes to a broker and buys
an options contract from Bob. The broker is the one that handles the money
transfer and also execute the options contract at the contract expiry time. Now
our goal is to replace the broker with a smart contract. For the purpose of a proof
of concept, the smart contract will also act as Bob, meaning if Alice buys
a short call option, the Velocity smart contract will put a long call against her
short call. This can be generalized so that other entities can fund the contract
but for the rest of this paper, Velocity acts as a market maker. This might lead
to users gaming the system, however it’s trivial to change the smart contract
to wait for the other opponent to enter the contract. We discuss this more in
Sect. 5.

4.1 Velocity Main Smart Contract

A Velocity smart contract can be used for speculation on the price of any two
assets4, although the Ethereum price is always exposed as the deposits and
the withdrawals are done in ETH5. As for this experiment, we use the price
pair of Bitcoin (XBT/BTC) and Ethereum (ETH). If we used price pairs not
involving ETH, for example the CAD/USD exchange rate, it would suffice to use
two contracts for CAD/ETH and ETH/USD. Or the payout function could be
changed to specify how it relates to numbers it is given. Note that in either case,
the payout will always be in ETH. In its full generality, any number that changes
over time and has a suitable feed (we describe feeds below) can be used: price
(stocks, bonds, commodities, etc.), rate (interest, inflation, population, etc.), or
something else (average global temperature, number of days without rain, etc.).

3 What is gas? http://ethdocs.org/en/latest/contracts-and-transactions/
account-types-gas-and-transactions.html#what-is-gas.

4 or any other events that an options contract can be based on.
5 Ethereum symbol.

http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas

558 S. Eskandari et al.

Smart Contract. The way Velocity smart contract is implemented, one party
purchases a contract by sending a nominal amount of ethereum (0.1 ETH) to
the contract’s ethereum address. Once confirmed by the network, the contract
will fetch a starting price from the price feed, PriceGeth, and run for a period of
time to reach the expiry time. The smart contract would put the same amount of
ETH from its pool of funds into escrow for the payout. In the PoC demo, we use
5 ethereum blocks (approximately 1 min) to settle a contract. When the expiry
time reaches, the same party must send another transaction to the contract and
call the settlement function to settle the contract which leads to sending the
payouts by the smart contract. While this experiment was going under beta
testings, we found out that if the user loses the contract, there is no incentive to
call the settle function as it would use up some ETH in gas and would not pay
the user. This would lead stale money held in the escrow of the smart contract.
This made us redesign our settlement functions and write one centralized cron
job script to go through the unsettled contracts once a day and call the settle
function on the ones that have been expired.
modifier checkMargin(uint amount) {

if (amount == (applyLOT(Margin)))
{ _ ;} else {

Error("Invalid Margin!");
immediateRefund();}

}
function goLong() public hasEnoughFunds(msg.value) checkMargin(msg.value)
payable returns(uint) {

lastOptionId = newOption(msg.sender, msg.value, true);
LongOption(lastOptionId, msg.sender, msg.value, block.number);
return lastOptionId;
}

Code 1 : Velocity Main Smart Contract - Long Option Call, The sender
of a transaction to goLong() function has to send exactly the
Margin value and with that he enters the option contract for
Margin value with the smart Contract

Settle Function. exercise() is responsible in settling the options contract and
pay out both parties (see Code 2), in which here is the user and the Velocity smart
contract. Most of the functions are responsible to find the appropriate option
contract and calculate the pay outs. However there are some functions that were
added later on for security measurements, such as isOpen modifier. Modifiers in
Solidity are functions that can check some statements before executing the main
function. The first deployed version of Velocity main contract was vulnerable to
a similar (but not the same) attack as the DAO attack, see Sect. 5. It was pos-
sible for an attacker to call an option contract and upon settling and winning,
keep calling the exercise() function using his OptionId and get more of the same
amount of payout over and over again. The code was patched and a new smart
contract was deployed later in the experiment6. send() is a built-in function in
6 Fix for the multiple payout bug: https://github.com/VelocityMarket/

Options-Contract/commit/f3c8d0ef66b886c9ee8b432e92c83f3a4fb525ba.

https://github.com/VelocityMarket/Options-Contract/commit/f3c8d0ef66b886c9ee8b432e92c83f3a4fb525ba
https://github.com/VelocityMarket/Options-Contract/commit/f3c8d0ef66b886c9ee8b432e92c83f3a4fb525ba

On the Feasibility of Decentralized Derivatives Markets 559

Solidity which handles the sending of funds to other ethereum addresses or con-
tracts. There are known vulnerabilities on how send() function works in solidity
which should be appropriately handled. One can use a smart contract address
as his option payout address which would execute some code upon receiving any
funds and use that code flow to drain the sender’s contract. payAndHandle()
function tried to use the best security practices to prevent such attacks (see
Code 5 for the source code).

modifier isOpen(uint optionId) {if (AllOptions[optionId].closed) throw; _ ;}
function exercise() public {

exercise(findOptionId(msg.sender));
}
function exercise(uint optionId) public isOpen(optionId) returns(bool) {

// REMOVED SOME CODE TO SAVE SPACE, FULL SOURCE CODE ON GITHUB
AllOptions[optionId].closed = true; //before payouts to prevent replay attacks
LockedBalance -= AllOptions[optionId].amount; //release escrow
// Payout calculation
if (pricesToCheck.pricediff >= (int(Margin))) { // Pay Long

//pay long
return payAndHandle(optionId, AllOptions[optionId].Long,

2 * AllOptions[optionId].amount);
}
if ((0 < pricesToCheck.pricediff) && (pricesToCheck.pricediff < (int(Margin)))) {

return (payAndHandle(optionId, AllOptions[optionId].Long,
(AllOptions[optionId].amount + pricesToCheck.priceDiffLOT)) &&

payAndHandle(optionId, AllOptions[optionId].Short,
(AllOptions[optionId].amount - pricesToCheck.priceDiffLOT)));

}
}

Code 2: Settle function of main options contract

Source Code. API documentation for other smart contracts to use the func-
tionality and also Python and NodeJS clients to communicate with the main
smart contract are available on Github7.

4.2 Price Feed

A decentralized Price feed is an essential requirement for having a decentralized
derivative market. There are a few proposals on how to fetch the price in a smart
contract. One is using Smart Contract oracles8, they offer daily updates for the
price using a predefined data source. This was not an option to be used for our
purpose as a daily update is not sufficient for short term derivative markets.
Another option that could be used was Oraclizeit. They way Oraclizeit works
is that the client smart contract, Velocity main contract in our case, sends a
transaction to Oraclizeit smart contract with the required API url and the fields it
needs, sometime after the confirmation by the network, Oraclizeit smart contract
sends a callback transaction to Velocity smart contract with the requested data
(Fig. 2).
7 Simple collared option smart contract: https://github.com/VelocityMarket/

Options-Contract.
8 Data and Payments for your Smart Contracts https://smartcontract.com/.

https://github.com/VelocityMarket/Options-Contract
https://github.com/VelocityMarket/Options-Contract
https://smartcontract.com/

560 S. Eskandari et al.

Fig. 2. Oraclizeit work flow

For the first implementation of Velocity smart contract we used Oraclizeit
method to fetch the price.

As mentioned before, most of the decentralized application infrastructure on
Ethereum blockchain are in Beta state and might not work as intended. This
applies for Oraclizeit, specially as by design they have a central server which can
stop working without any notice or visible signs. The red boxes in Fig. 2 indicates
the centralized parts of the system. As you can see in (code 3), Oraclizeit will
send the price to the callback function at the time of the call and also execute
the exercise() function which is responsible for saving the price and calculating
the payout amounts. This makes the callback function one of the important
functions which should be called at the specific time.

oraclize_setProof(proofType_TLSNotary | proofStorage_IPFS);
//oraclize_setNetwork(2); //
priceUrl = "json(https://www.bitstamp.net/api/v2/ticker/btcusd).last";
function updateBTCUSDFromFeed(uint delay){

oraclize_query(delay, "URL",
priceUrl, 400000);

}
function __callback(bytes32 myid, string result, bytes proof) {

if (msg.sender != oraclize_cbAddress()) throw;
uint BTCUSDFeed;
BTCUSDFeed = parseInt(result, 2);

exercise() // this function exercises the contract to calculate the payouts
}

Code 3 : Implementation of Oraclizeit price feed in Velocity smart contract

In our testing period, we encountered multiple problems with this design:

1. The callback would not happen at all, which would result in an unsettled
options contract. Oraclizeit support team were helpful and fixed this issue
later on.

On the Feasibility of Decentralized Derivatives Markets 561

2. The callback would happen with some delays, which would result in inconsis-
tency in the fetched price with the the options contract expiry date. Decen-
tralized networks have some latency by design, realtime does not really mean
anything in such networks, hence counting on a transaction to happen at a
exact time is not the best solution.

3. The callback would happen with insufficient gas, which would result in the
failure to properly run exercise() function and thus failure to settle the options
contract. Oraclizeit library offers a way to send more gas than needed in case
the callback function needs more gas, however on the time of this experiment
that functionality was not working properly.

PriceGeth. We designed PriceGeth9 to publish (almost) realtime price pairs to
Ethereum blockchain. This is how PriceGeth works (also see Fig. 3):

1. PriceFetcher server is saving an exchange Prices (USDBTC, BTCETH,
BTCETC, BTCDOGE) every 1 s in a database

2. BlockListener is listening on using Geth10 for new blocks
3. When BlockListener sees a new block it fetches the price at the Blocktime

from PriceFetcher Module
4. PriceGeth server sends the data to PriceGeth smart contract (Code 4) and

updates the latest price.

Fig. 3. PriceGeth Work Flow (Color figure online)

PriceGeth smart contract would keep all the historical prices and all would be
available to all smart contracts on Ethereum blockchain for free (no gas needed

9 Price API for Smart-Contracts on Ethereum Blockchain https://github.com/
VelocityMarket/pricegeth.

10 Official Go implementation of the Ethereum protocol https://geth.ethereum.org.

https://github.com/VelocityMarket/pricegeth
https://github.com/VelocityMarket/pricegeth
https://geth.ethereum.org

562 S. Eskandari et al.

to fetch the price). The reason this is almost realtime, goes back to the nature of
blockchains. Time units as in seconds and minutes are not meaningful for most
of the blockchain applications, but the block height can be used as the time
unit, meaning the time of each block is known to all users of the blockchain,
but before a block is published no other time units can be used. This is why
we designed PriceFetcher module to connect to an exchange API and saves the
price pairs every second, to have the price for the previous block time anytime
a new Ethereum block is generated.

struct Feed {
uint USDBTC;
uint40 BTCETH;
uint40 BTCETC;
uint40 BTCDOGE;
uint40 timestamp;
uint blockNumber;

}
mapping (uint => Feed) priceHistory;
function setPrice(uint40 timestamp, uint40 blocknumber, uint USDBTC,
uint40 BTCETH, uint40 BTCETC, uint40 BTCDOGE) ifOwner() {

if (firstBlock == 0) firstBlock = blocknumber;
priceHistory[lastBlock].timestamp = timestamp;
priceHistory[lastBlock].blockNumber = blocknumber;
priceHistory[lastBlock].USDBTC = USDBTC;
priceHistory[lastBlock].BTCETH = BTCETH;
priceHistory[lastBlock].BTCETC = BTCETC;
priceHistory[lastBlock].BTCDOGE = BTCDOGE;
PriceUpdated(timestamp, blocknumber, USDBTC, BTCETH, BTCETC, BTCDOGE);

}
Code 4 : Pricegeth Main Smart contract

PriceGeth is a proof of concept implementation of having a trusted entity
publishing price pairs to the blockchain and we are aware of the implications of
trusting the PriceFetcher not to manipulate the prices. PriceFetcher is the central
point of failure in PriceGeth design and should be addressed in future work.
However after further research, it is almost impossible to have a truly trustless
decentralized price feed unless we have a decentralized exchange infrastructure
on the blockchain. This exchange can be used as the price oracle as the order
books would be stored on the blockchain and hence there is no one single point
of trust. The red boxes in Fig. 3 are indicating the centralized parts of this
implementation. PriceGeth is released as a stand alone smart contract and also a
library to be used in other smart contracts to use the price feed free of charge11.
Another challenge of PriceGeth design is that PricePublisher is paying the gas
for publishing and storing all the price pairs, and as there is no incentive of
doing so, it is not an inefficient way of offering price oracles. PriceGeth can be
implemented in a way that clients should use a token issued to them beforehand
to fetch the price, or require payments to release the price data.

11 PriceGeth Library https://github.com/VelocityMarket/pricegeth.

https://github.com/VelocityMarket/pricegeth

On the Feasibility of Decentralized Derivatives Markets 563

By design PriceGeth operator should not be able to use Velocity options as
he can manipulate the price to game the system.

There is a similar work on price feeds titled Town Crier [12], which uses TLS
security to prove the fact that the data sent to the smart contract is exactly
as the one provided by the API, conceptually similar to Oraclizeit TLSNotary-
proof12. TownCrier uses Intel SGX in their central server which insures the
integrity of hardware used and thus insures no manipulation is done on the
server. Even though one can argue that the data provider is a trusted entity, one
of the goals to have a decentralized application is to have no trusted entity in
the infrastructure and to have a trustless system.

5 Discussion

Security. Smart contracts have introduced some new security concerns to devel-
opers. Notions like gas usage and consensus and most importantly a function that
pays out irreversible money are new to most of the developers hence the ability
to develop a secure smart contract is hard to grasp. One of the visible examples
of security issues is the attack on The DAO, Decentralized Autonomous Organi-
zation13. The goal of the DAO was to remove all the need for any venture capital
intervention or any other third party for fundraising on a new idea or a company
through crowdfunding and giving the investors tokens (shares) of the company.
However due to an issue splitDAO function which was responsible to manage
and fund new child DAOs or projects, an attacker was able to take one third of
the money in the original DAO, worth approximately 86 million USD [16] at the
time of the attack, this vulnerability is dubbed Reentrancy Vulnerability.

Luu et al. [8] developed a symbolic execution tool called “Oyente” to find
potential security bugs, which they proved effective by running on Ethereum
blockchain and successfully identifying The DAO vulnerability. We used this
tool to analyze our code (see Fig. 4).

Another family of vulnerabilities that have caused some of the known attacks
are Mishandled Exceptions, which mostly has caused Denial of Service attacks on
individual smart contracts. In Velocity main contract we used modifier functions
to sanitize the inputs to narrow down the probability of such exceptions. Another
set of attacks Timestamp Dependence and Transaction-Ordering Dependence are
interesting to ponder, however due to the design of Velocity and PriceGeth, they
are not applicable to these smart contracts. As an example, usage of timestamp
was replaced by Ethereum blocknumber and smart contracts time is based on the
block number rather than seconds and minutes. There has been more security
bugs in solidity compiler, a few related bugs were explained in Sect. 4.1.

12 https://docs.oraclize.it/#security-tlsnotary-proof.
13 https://github.com/slockit/DAO.

https://docs.oraclize.it/#security-tlsnotary-proof
https://github.com/slockit/DAO

564 S. Eskandari et al.

Fig. 4. Results of Smart Contract analysis tool called Oyente [12] to find security bugs

function payAndHandle(uint optionId, address addr, uint amount)
private returns (bool success) {

if (addr.send(amount)) {
optionPaid(optionId, addr, amount); //event for successful payment

} else { throw;}
return true;

}
Code 5 : Secure payouts in smart contracts

Gas Sustainability. The concept of gas usage for processing power is not easy
to grasp even for long term developers. People might be familiar with limited
computational or storage resources, but the concept of passing gasLimit to a
function to use to process inputs is a new concept. Each step has its own esti-
mated gas usage, as an example to store a value in a variable, you have to pay
100 Wei14 for each sstore call15. This should be considered that there’s a cap for
gas usage for each transaction and block, thus complex computation should be
split into multiple transactions which makes smart contract design more compli-
cated than they are. Also we should mention that function calls can fail due to
the fact that they run out of gas and they don’t have enough gas to finish their
required computation or storage. This can cause unpredicted behaviour from the
smart contract as there would be broken flows in the code which should have
been handled by the developer. The gas usage could change as there are updates
and security patches to Ethereum protocol, e.g. transaction spam attack16. It
might take multiple implementation of the same function to find an equilibrium
between readability and gas efficiency.

Misuse of the Contract. In the current implementation of Velocity smart
contract, one can call the Long option when he is sure of the price increase

14 Wei: Smallest unit of Ethereum, equevalent to 0.000000000000000001 ETH.
15 put into permanent storage.
16 Long-term gas cost changes for IO-heavy operations to mitigate transaction spam

attacks https://github.com/ethereum/EIPs/issues/150.

https://github.com/ethereum/EIPs/issues/150

On the Feasibility of Decentralized Derivatives Markets 565

between the start time and expiry time and keep on doing this until there is
no money left in the smart contract’s pool of funds. This is because the smart
contract calls the opposite of the incoming option call blindly. However in future
work, there should be market scoring rule which depends on how many short
option calls are placed comparing to the long calls and make it more expensive
to call short when there are more short option calls than long calls.

Collar Option Library. Velocity smart contract can be used as a module in
any other smart contract to handle option calls and execute some functions on
the expiry time. This smart contract was written as a proof of concept and was
released under GPL license17.

6 Future Work

As discussed in Subsect. 4.2, fully decentralized Price feeds and oracles are needed
in order to have a trustless decentralized financial market. This can be done by
having a decentralized exchange to extract prices from using smart contracts.
Even though there has been many price feed methods discussed, none of them
seem to have trustless infrastructure. Smart contracts security is not well prac-
ticed and there are many unknown attack vectors in the eco system, from solidity
compiler security bugs [17] to best practice security implementations [18], there
is work to be done and tests to have a more mature secure eco-system to work
with, Specially if the end goal is to have a decentralized financial application in
place where money is at stake.

As for the options contracts, there should be more research and work on the
payouts to make them smarter. One proposed solution is to have market scoring
rules in place, which means if there are more open short option calls than long
calls, it should get more expensive to call short options and vice-versa. Smart
contracts are unchangeable piece of code that run autonomously, meaning if
there’s a market crash or systematic error, there cannot be anything to do to
suspend the payouts and shut down the application, unless with pre-defined
functions in the smart contract which only the owner can trigger, which would
be a double standard in the trustless eco-system.

7 Conclusion

Even though the idea of having a fully autonomous and decentralized derivative
market is intriguing, the infrastructure to reach this goal is still missing from the
underlying network. As for example, price feed is one of the essentials of such a
market and it should be done in a fully decentralized trustless way to prevent
fraud and market manipulation by the feed provider. All the existing solutions
today, have a central point that can manipulate data, it is either the exchange

17 https://github.com/VelocityMarket/Options-Contract.

https://github.com/VelocityMarket/Options-Contract

566 S. Eskandari et al.

API or the component responsible to publish the price. As discussed before, one
of the only solutions to this problem is to have a fully decentralized exchange on
the network to provide realtime price feed for other smart contracts. There are
some work done on decentralized exchanges [5], although there is no real world
deployment of such a system at the time of writing. Smart contracts are fasci-
nating idea that can revolutionize the technology by removing the middlemen,
however the underlying technology is more on the proof of concept level than
mature enough to be used on the real world scenarios. We should also mention
that the barrier for people to have the relevant crypto-currency to work with
such systems still exists.

A Demo Website (UI) for the Velocity Smart Contract

See Fig. 5.

Fig. 5. Velocity options smart contract demo

References

1. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum
smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS,
vol. 10204, pp. 164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54455-6 8

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8

On the Feasibility of Decentralized Derivatives Markets 567

2. Benet, J.: Ipfs-content addressed, versioned, p2p file system (2014).
arXiv:1407.3561

3. Bentov, I., Mizrahi, A., Rosenfeld, M.: Decentralized prediction market without
arbiters (2017). arXiv:1701.08421

4. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform (2014)

5. Clark, J., Bonneau, J., Felten, E.W., Kroll, J.A., Miller, A., Narayanan, A.: On
decentralizing prediction markets and order books. In: WEIS (2014)

6. Irvine, D.: Maidsafe distributed file system. Technical report, maidsafe.net limited
(2010)

7. Kievit-Kylar, B., Horlacher, C., Godard, M., Saucier, C.: Equibit: a peer-to-peer
electronic equity system (2016). arXiv:1612.06953

8. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

9. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
10. Szabo, N.: The idea of smart contracts (1997)
11. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper (2014)
12. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenti-

cated data feed for smart contracts. In: Proceedings of 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 270–282. ACM (2016)

13. okturtles: A blockchain-based DNS, http server that fixes https security (2014)
14. Finley, K.: A 50 million dollar hack just showed that the DAO was all too human.

Wired (2016)
15. Demian Lerner, S.: Rootstock: bitcoin powered smart contracts. Whitepaper (2015)
16. Daian, P.: Analysis of the DAO exploit. Hacking, Distributed (2016)
17. Reitwiessner, C.: Security alert: solidity variables can be overwritten in storage.

Ethereum Blog (2016)
18. ConsenSys: Ethereum contract security techniques and tips. ConsenSys (2016)

http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1701.08421
http://arxiv.org/abs/1612.06953

	On the Feasibility of Decentralized Derivatives Markets
	1 Introductory Remarks
	1.1 Scope and Contributions

	2 Related Work
	3 Materials and Methods
	4 Implementation
	4.1 Velocity Main Smart Contract
	4.2 Price Feed

	5 Discussion
	6 Future Work
	7 Conclusion
	A Demo Website (UI) for the Velocity Smart Contract
	References

