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ABSTRACT
Android’s trust-on-first-use application signing model asso-
ciates developers with a fixed code signing certificate, but
lacks a mechanism to enable transparent key updates or cer-
tificate renewals. The model allows application updates to
be recognized as authorized by a party with access to the
original signing key. However, changing keys or certificates
requires that end users manually uninstall/reinstall apps,
losing all non-backed up user data. In this paper, we show
that with appropriate OS support, developers can securely
and without user intervention transfer signing authority to
a new signing key. Our proposal, Baton, modifies Android’s
app installation framework enabling key agility while pre-
serving backwards compatibility with current apps and cur-
rent Android releases. Baton is designed to work consistently
with current UID sharing and signature permission require-
ments. We discuss technical details of the Android-specific
implementation, as well as the applicability of the Baton
protocol to other decentralized environments.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Cryptographic controls

Keywords
Android; application signing; mobile operating systems

1. INTRODUCTION
Modern operating systems use digital signatures as a mech-

anism to verify the integrity of downloaded software and/or
authenticate developers. Platforms such as iOS, Windows
Phone, and Blackberry use code signatures to restrict in-
stallation of third-party applications to only registered de-
velopers. These platforms use a centralized authority, where
developer certificates or the software itself is signed by the
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vendor prior to being distributed to user devices. A central-
ized authority is restrictive for users (e.g., users must obtain
software and updates from sources formally sanctioned by
the platform vendor) while allowing vendor control over cer-
tificate issuance.

Android, one of the most widely deployed mobile operat-
ing systems, does not use a centralized authority. Instead,
developers are responsible for obtaining suitable signing cer-
tificates (typically self-signed, but they can be issued by a
certificate authority). On Android, the OS allows installa-
tion of app updates only if they are sanctioned by the same
developer. Such update integrity is enforced in the OS by
comparing the set of signing certificates embedded in the
already installed application against the set in the updated
version. If the updated version’s set of certificates matches
the set in the previously installed app, the update is al-
lowed. Otherwise, the update fails. Since Android uses a
trust-on-first-use [25] approach, initial app installations are
not subject to such certificate continuity verification.

When the certificate sets during an update don’t match,
the only method to install the updated app is for the user to
manually uninstall the old app (which deletes the app’s user
data) and then install the updated version as a new install.
This process in effect revokes trust in the previous signing
certificate set, replacing it with a newly trusted set.

Aside from this uninstall-reinstall method, Android, in its
operating system and developer tools, has no mechanism for
developers to renew, change, or revoke signing certificate(s).
In this paper, we motivate, design, and implement Baton, a
set of software changes to Android’s app installation frame-
work and developer tools that allow code signing certificates
to be updated (informally called key agility or certificate
agility) without user involvement, user data loss, or changes
to the decentralized code signing model.

When using Baton, app updates include a certificate chain
that is cryptographically verified at update time. Upon val-
idation of a chain linking the signing certificate embedded
in the currently installed version of an app to the certifi-
cate embedded in the newly installed version, updates are
allowed (preserving user data) without requiring the user
to uninstall/reinstall the app. Baton is designed to be in-
crementally deployable and fully backwards compatible with
currently deployed apps. The Baton component of Android’s
installation framework is only invoked when certificate up-
dates are required, imposing no new overhead during regular
application use or software updates not involving signing key
changes.



1.1 Limitations of Existing Proposals
The concept of forward certificate chains, where an old

key signs a new key (or alternatively, the new key is trans-
mitted over a channel secured with the old key) is a long-
known key-management technique, almost as old as public
key certificates, with applications to encrypted email [29],
TLS certificates [3], and Linux files [24].
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Stock Android [4] • • •
Baton (Sec 4) • • • •
Self-Signed Executables [23] • •
Key-locking [24] • •
Baton Alternative (Sec 4.2) • • •
Central Certificate Authority • • • •

Table 1: A comparison of proposed update integrity
mechanisms, including ones with key agility. A •
denotes the availability of a feature in the corre-
sponding proposal.

An early proposal [23] for binary file update integrity
through self-signing suggests signed executables that include
an embedded set of public signing keys, sufficient for verify-
ing signatures. This approach, while functionally similar to
Android’s app update mechanism, does not allow key agility.
In subsequent work [24], the verification key set is allowed
to evolve which enables key agility. However, it requires the
user to diligently download and install all issued updates
sequentially; skipping updates could lead to missing verifi-
cation keys for future updates, precluding such updates from
being installed. By contrast, Baton enables key agility while
allowing users to skip intermediate updates. In addition,
Baton is designed specifically for Android in a way that is
compatible with jarsigner. None of the above proposals
fully enable revocation, which is known to be difficult in the
absence of a central authority. We address revocation in
Section 6.3. Our comparison is summarized in Table 1.

Contributions. We first clearly highlight, through anal-
ysis of real-world examples, problems that have resulted
from Android’s current design wherein application package
signing lacks what would naively be considered “ordinary
best practices” related to certificate and public key updates
(what we refer to as certificate agility). We then demon-
strate that public key evolution, notoriously difficult to get
right in practice (which we believe explains its current ab-
sence in Android), can be retrofitted without negative im-
pact to the existing ecosystem. Thus, we motivate, design,
and implement a mechanism supporting certificate agility
on Android. We build upon existing academic proposals
to create a practical solution that fits within existing con-
straints in the Android ecosystem, preserving compatibility
with currently deployed applications, and without negatively
impacting Android’s secure app interaction policy. We ex-

Key algorithm/size Occurrences % of total
RSA 1024 4593 74.57
RSA 2048 1340 21.76
DSA 1024 202 3.28
Other (non-default) 24 0.39

Table 2: Signing key algorithm and key size over a
dataset of 6159 certificates from the Android Obser-
vatory.

plain the Baton protocol, including the specific technical de-
tails regarding modified components which provide Android
support. While our main focus herein is Android, the Baton
architecture is of general interest beyond Android as it pro-
vides a low overhead, algorithm-agnostic, cryptographically
verifiable mechanism to update signing certificates without
depending on a centralized infrastructure.

2. MOTIVATION FOR KEY AGILITY
This section presents arguments in favor of enabling key

agility on Android backed by an empirical dataset obtained
from the Android Observatory project [8].

2.1 Absence of Secure Defaults
The Android developer tools provide a point-and-click

wizard for signing applications. The wizard requests (as in-
put from the developer) a certificate validity period (Google
requires a validity of 25 years or more for apps submitted
to the Play Store [4]), and then invokes Java’s keytool to
generate a suitable signing key and certificate. Parameters
such as key type, key size or signing algorithm cannot be
specified using this wizard. However, it does pass a -keyalg

RSA parameter to keytool, generating a default 1024 or 2048
bit RSA key (on Java 6 and 7, respectively). When invoked
outside the wizard (e.g., from the command line) without
any parameters, keytool generates a 1024 bit (in a 160 bit
subgroup) DSA public key.

On a dataset of 6159 signing certificates obtained from
a snapshot of the Android Observatory from September 6,
2013, we observe that over 99% of certificates were likely
generated using the Android signing wizard (see Table 2).
In fact, only 24 certificates appear to have been generated by
passing manual (non-default) options to keytool. According
to recommendations by the National Institute of Standards
and Technology (NIST), signature generation with key sizes
less than 2048 bits for RSA and DSA was deprecated in
2011 and disallowed in 2013 [7, 6]. By this recommendation,
over 75% of keys in our dataset do not follow best practices,
yet developers have no mechanism to transparently issue an
updated certificate with a stronger key. Enabling certificate
agility allows developers to change key algorithms or key
sizes as best practices evolve.

2.2 Ownership Transfer
Applications can be sold or otherwise transferred between

developers. Under the current model and to avoid user in-
teraction, transferring private signing keys is a likely com-
ponent of the ownership transfer process. However, such
sharing of private signing keys is problematic if a developer
signs multiple apps with the same signing certificate; sur-
rendering a private key for one app allows the new owner of
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Figure 1: CDF for certificate reuse in our dataset
of 11452 apps and 6159 certificates. An x = y line
depicting a theoretical 1 distinct certificate per dis-
tinct app is plotted for reference.

the key to issue updates to any other app signed with that
key.

The September 6, 2013 snapshot of the Android Observa-
tory consists of 11452 distinct1 applications. On this dataset,
we notice that key reuse (i.e., using one key to sign more
than one distinct app) happens frequently. Out of a total
6159 signing certificates, 1037 keys (16.83%) were used to
sign 2 or more distinct apps. Figure 1 shows a cumulative
distribution function of signing key reuse on our dataset.
Some cases of reuse involve developers releasing a free (usu-
ally ad-supported) version of an app alongside a paid version
signed with the same key. In other cases, software compa-
nies (e.g., Rovio, Google, Yahoo, etc.) release a separate
app for each service or game, but use a single signing key on
all apps.

2.3 Logical Requirements
Secure app interaction. Developers (or development
teams) can leverage Android’s signature-level privileges for
UID sharing or signature permissions (see Section 3) to se-
curely integrate apps or app components. Without certifi-
cate agility, developers must decide ahead of time which apps
should be granted the capability to interact securely. It may
not always be possible to predict future functionality or re-
quired interaction of an application.

External certificate management Developers may wish
to use certificates (perhaps previously acquired) issued by a
certificate authority to assert a validated identity on their
apps. However, many reputable CAs will not issue certifi-

1We use the package name to differentiate between apps and
to avoid counting app updates as key reuse.

cates with an essentially infinite lifespan (25 or more years).
Some CAs (e.g., Symantec2) will issue these long-lived cer-
tificates but will not release them to the developer; the de-
veloper must use a CA-provided signing service to sign appli-
cations, which is an additional cost and necessitates distinct
certificates specifically for Android apps. Without certifi-
cate agility, developers cannot renew an expired certificate
and still update user apps without user interaction.

2.4 Case Studies
This section describes two high-profile examples highlight-

ing the potential benefits of certificate agility on Android.

Google Authenticator.
In March 2012, Google changed the signing certificate

for their two-step authentication app Google Authenticator
(package name authenticator3). Google released a new ap-
plication (under package name authenticator2) signed with
a new signing key and included a certificate used to sign
other prominent Google properties (e.g., Maps, Chrome,
and the Play Store client). The certificate switch was os-
tensibly required to enable secure interaction (see Section 3)
between Authenticator and this set of apps.

The upgrade path from one version of Authenticator to
the other required that users take a series of steps, including
a manual new install and uninstall. To assist users, Google
created a help page4 explaining the upgrade procedure. Be-
low is an excerpt:

[...]Once you have confirmed as part of the pre-
vious step that you are able to successfully gen-
erate valid verification codes using the new Au-
thenticator, it is safe to uninstall the old version
of the app. Because both versions have the same
icon, make sure to check the version number be-
fore uninstalling: you want to keep version 2.15.

In Appendix A, we perform a usability analysis technique
known as a cognitive walkthrough on this upgrade process.
We find that the overall process is convoluted and should
not involve the user. However, given the constraints, Google
did mitigate many potential usability issues. With Baton,
we aim to provide a mechanism by which, when developers
update apps which include changed signing certificates, no
additional interactions are triggered for end users when the
updated apps install. Baton would have allowed Google to
issue a standard update to authenticator which includes
the new signing certificate.

Mozilla Firefox for Android.
Before releasing Firefox for Android in 2010, Mozilla’s in-

tention appeared to be to use their existing Microsoft Au-
thenticode certificates or to purchase a 2 or 3 year certificate
from Verisign to sign Firefox for Android.5 Mozilla correctly

2http://www.symantec.com/en/ca/verisign/code-
signing/android
3The full package name is com.google.android.
apps.authenticator2
4Upgrading to Google Authenticator v2.15 http:
//support.google.com/accounts/bin/answer.py?hl=
en&topic=1099586&answer=2544996
5https://bugzilla.mozilla.org/show_bug.cgi?id=
562843
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concluded that there is no support in Android for certifi-
cate renewal, even if there is no change to the signing key
pair. Mozilla filed a bug report6 on Android asking for con-
firmation or motivation for why certificate renewal is not
supported. The bug report was closed automatically get-
ting marked as obsolete on June 23, 2013 despite the issue
remaining unresolved and unacknowledged.

While the Android OS does not currently enforce certifi-
cate expiration (i.e., apps with expired certificates can be
installed as usual), the Android documentation [4] asserts
that certificate validity is verified. This inconsistency leads
us to believe that certificate expiration policies on Android
may change in the future. Baton allows developers to use
shorter lived (more typical lifespan) certificates, and update
them as needed by issuing an application update. This may
prove useful for companies, such as Mozilla, that already
have (or wish to have) code signing certificates issued by
certificate authorities.

3. BACKGROUND (ANDROID)
We quickly review, for convenience, background on the

packaging and signing of Android apps and discuss the role
of digital signatures on apps for application interaction.

Android applications are packaged and distributed as com-
pressed (zip) archives, usually with an APK file extension.
A typical app archive contains at least: digital signature
data (in the META-INF directory); and application metadata
such as version strings, unique package name, and permis-
sion declarations (AndroidManifest.xml).

Every installed Android app must have a unique, developer-
chosen package name defined in AndroidManifest.xml , and
should follow standard Java naming conventions to avoid
collisions amongst applications. In general, developers re-
verse their domain name for uniqueness (possibly append-
ing a name for an app if there is more than one app per
domain, e.g., org.mozilla.firefox). The package naming
convention may be enforced by application markets such as
Google Play, but developers are free to claim their package
namespace, or re-use an existing namespace.

The AndroidManifest.xml file also contains a version code,7

which is a developer-chosen monotonically increasing inte-
ger independent of the user-visible version name (e.g., v1 or
2.5). During updates, the OS compares version codes and
only allows installation if the version code is set to increase
(i.e., app downgrades are never allowed).

Application signing and terminology.
All Android packages must be digitally signed to run on

user devices or environment simulators [4]. During app
development and testing, the standard development envi-
ronment automatically creates self-signed debug certificates.
For application release, Android allows developers to inde-
pendently generate or obtain a key pair and a corresponding
certificate that can be used for signing apps. The certifi-
cate may be self-signed, or issued by a certificate authority.
While self-signed certificates are not required, they appear
to be implicitly encouraged by Google, since the Play Store
only allows apps with certificates expiring after 2033 to be

6http://code.google.com/p/android/issues/detail?
id=10020
7http://developer.android.com/tools/publishing/
versioning.html

published and many CAs won’t issue certs with a 20 year
lifespan.

Developers sign their code through the jarsigner tool,
distributed as part of the standard Java development envi-
ronment. During the signing process, jarsigner creates the
META-INF directory inside the Android package, and adds
three files:

1. MANIFEST.MF - A manifest file containing a list of every
file name (except files in META-INF) in the archive at
the time of signing, and a corresponding SHA1 hash
for each entry.

2. CERT.SF - A file containing a SHA1 hash of each entry
in MANIFEST.MF file, along with a corresponding file
path.

3. CERT.RSA - The developer’s X.509 certificate, usually
self-signed using the RSA algorithm. This file also
includes the signature of the entire CERT.SF file.

Apps can be signed with multiple keys, in which case the
META-INF directory is populated with multiple certificates
(one per signing key), manifests, and signature files. The
signature(s) on an app can be stripped by deleting the META-
INF directory.

Initial install.
On initial installs (i.e., where the package name of the

application being installed is not already associated with an
app on the device), Android only verifies the integrity of
the app by performing a signature verification process on all
files (except those in the META-INF directory). There is no
external verification of the developer’s certificate at install
time, even if a certificate signed by a CA is used.

Updates.
On application updates (i.e., where there is already an

app matching the package name of the app being installed),
the signing certificate on the app being updated is compared
with the certificate in the downloaded update. If the certifi-
cates are the same, the update is allowed following Android’s
certificate continuity verification. If the certificates are dif-
ferent, the update fails. We note that it is the certificates
themselves that are compared, not the signatures. Thus,
even if two certificates are signed with the same private key,
updates are not allowed.

Uninstalling apps.
Applications on Android cannot uninstall other applica-

tions without user interaction. Uninstalling an app typically
requires the user to load the on-device application market or
application manager. Uninstalling an app removes all locally
stored user data, but applications may store data elsewhere,
such as the cloud or the SD card. The method in which that
data is handled after uninstallation is up to the developer.

Secure application interaction.
Android uses signature information to allow apps sanc-

tioned by the same developer(s) to communicate and share
data securely. Two app interaction features rely on signa-
tures:

1. UID sharing. Android apps are assigned unique UNIX
UIDs at install-time to enforce application isolation

http://code.google.com/p/android/issues/detail?id=10020
http://code.google.com/p/android/issues/detail?id=10020
http://developer.android.com/tools/publishing/versioning.html
http://developer.android.com/tools/publishing/versioning.html


and sandboxing. When two or more apps are signed
with the same key, developers can specify that they
want these apps to be assigned the same UID, allowing
mutual access to file storage or process space. UID
sharing is common amongst modular applications such
as plug-ins and extensions and eliminates the need to
use excessive inter-process communication to transfer
data between apps.

2. Signature permissions. Developers can define public
interfaces available to other apps. Some interfaces may
be sensitive, so they can be protected by developer-
defined permissions. One type of developer-defined
permissions is a signature permission, which can only
be granted to applications signed with the same key
as the application exposing the interface. Develop-
ers often use signature permissions to securely expose
functionality and interact with other apps.

4. DESIGN AND IMPLEMENTATION OF
BATON

Baton provides the ability for developers to delegate sign-
ing authority to a new private key. This is accomplished by
creating a data structure (token) in which the old signing
key is used to sign the new certificate and additional corre-
sponding metadata. Each token is embedded in a certificate
chain describing the history of delegations. The chain is
cryptographically verifiable, and embedded inside the APK
file of subsequently released Android apps after the first del-
egation occurs. The certificate chain and verifying code are
implemented to meet the following design objectives:

1. No user involvement. Certificates and signatures are
system-level components that need never be visible to
the user. Baton provides a system-level mechanism to
validate certificate changes and does not involve the
user in any decisions or actions.

2. Compatibility with Android’s security model related to
application signing. Android uses certificates for soft-
ware update continuity and for application interaction
(see Section 3). Baton does not change the require-
ments for signature permissions and UID sharing.

3. Minimal OS changes. We add code to the Android ap-
plication installation framework and developer tools,
but make no other software modifications, and require
no change of behavior by developers if certificates don’t
need to be changed.

4. Backwards compatibility. Baton supports incremental
deployment with incremental benefit. Users with Ba-
ton-enabled Android will be able to upgrade applica-
tions that have changed their signing certificates (pro-
vided verification of the delegation succeeds). Users
without a Baton-enabled Android build can still install
and upgrade applications that include Baton certificate
chains. These users, as with current Android, will be
unable to transparently apply software updates if there
is a certificate change; instead they must uninstall the
current version and install the update as a first install.

Baton has two core components: (1) a set of patches to the
Android installation framework, modifying packages respon-
sible for parsing the AndroidManifest.xml file and verifying

application signatures; and (2) an Eclipse plug-in for assist-
ing developers in generating key delegation metadata.

Delegating Signing Authority.
For a developer to successfully delegate (i.e., endorse a

new signing key) signing authority to a new signing key
(shown as an example in Figure 2 as an update from V2SigA

to V3SigB), they must embed a valid delegation token in
the update. In the example in Figure 2, a delegation token
passing signing authority from KeyA to KeyB (i.e., the pri-
vate keys associated with certificates A and B, respectively)
must be present in the update. The delegation token gener-
ation is described as step one in the signing key endorsement
protocol given in Protocol 1.

4.1 Threat Model and Goals
We consider the following security objectives to be neces-

sary for any secure update mechanism, including Baton:

1. No Unauthorized Updates. Updates to installed apps
must be authorized (either directly or transitively) by
the signer(s) of the originally installed version of the
app.

2. No Replays. Key delegation tokens should be bound to
specific applications and versions. The tokens should
not allow unintended delegations through embedding
potentially modified tokens on unauthorized applica-
tions.

3. Mitigating Social Engineering. The update mechanism
should only require user actions that are easily distin-
guishable from the actions a target victim user would
take in a social engineering attack.

4. No Unauthorized App Interaction. Multiple apps may
only interact through properly authorized privileged
means (e.g., sharing a UID or granting access to re-
stricted APIs) with the mutual authorization of all the
integrated apps.

We assume the attackers in the system to be computation-
ally-bounded adversaries, who may hold their own signing
keys, have their own apps released on application markets,
and even have apps installed on a target user’s phone. We
assume adversaries are not capable of learning the private
signing keys of other developers (we discuss key compromise
in Section 6.2), nor are they able to modify or otherwise
compromise the Android OS. We assume, however, that the
adversary can tamper with any Android application pack-
age. A security analysis (see Section 5.3) is given after first
describing the details of Baton.

4.2 Implementation

Certificate Chain and Delegation Tokens.
In Baton, a certificate chain is a sequence of one or more

delegation tokens. Each delegation token in the certificate
chain is a signed collection of metadata which contains the
following information:

1. The application package name.
2. The application version code.
3. A set8 of previously active certificates.

8Baton assumes developers may use multiple signing keys on
the same application [10].



Protocol 1: Baton signing key endorsement protocol

Overview: The holder of KeyA wishes to delegate signing authority to a new key KeyB.

Variables:
KeyA,KeyB - the private keys corresponding to the public keys in CertA and CertB respectively.
CertA,CertB - the signature verification certificate used to verify signatures on current application release, and the
certificate being delegated to, respectively. The certificates are self-signed.

Pre-requisites: The fingerprint of CertB has been communicated to the holder of KeyA over a channel with
guaranteed integrity.

Protocol:

1. Holder of KeyA generates token=SigKeyA{H(pkg name, version code, CertA, CertB fingerprint, previous token
hash†)}.

2. token is communicated to holder of KeyB.

3. Holder of KeyB includes token in AndroidManifest.xml when releasing updates signed with KeyB.

†: If there is no previous token to hash (i.e., it is the first token to be included in a certificate chain) null may be
substituted for the previous token hash value.

4. A set of currently active certificates.
5. A cryptographic hash of the previous delegation token

in the certificate chain.

A Baton delegation token acts as a verifiable endorsement
of a transition from one set of certificates to a new set of
certificates whose corresponding private keys will be used
to sign the new or current version of the application. The
generation of the delegation token is described in Protocol 1.

Each delegation token, including a signed hash of the dele-
gation token prior to itself in the chain, allows cryptographic
verification of the entire certificate chain. This prevents an
adversary from removing, adding, or rearranging delegation
token elements in the chain. Inclusion of the package name
scopes the delegation to only the specified application. For
example, if a developer signs three applications with the
same signing key and generates a Baton delegation token to
update the certificate of only one of the three applications,
the scope prevents this same token from being embedded
in the other two applications, as the package name will not
match.

Baton XML.
Baton applications embed into the AndroidManifest.xml

an XML representation of the certificate chain. To simplify
the signing and verification procedure we detach9 the dele-
gation token signatures from the delegation token metadata
to create two separate sets of nested elements, certificate-
chain and certificate-chain-signatures (see Figure 3).
The delegation-token elements in certificate-chain are
matched to the corresponding delegation-token-signature

elements in the certificate-chain-signatures by order
within their parent element. The signing process is per-
formed following the xmldsig [1] standard best practices10

outlined by the W3C working group.
To allow signature validation in the case of missed inter-

mediate updates, each delegation token includes a Base64
encoding of each certificate in the previous certificate set

9http://www.w3.org/TR/xmldsig-core/#def-
SignatureDetached

10http://www.w3.org/TR/xmldsig-bestpractices/

as well as their fingerprints. We chose to embed the full
certificate for each of the previous-certs as a convenience
to handle updates from a very old version to a new ver-
sion signed with certificates which would be valid only after
processing several delegations. In this case, the certificates
specified in intermediate tokens may not be present within
the application and must be loaded from the encoded version
in the token.

As a design alternative (listed as“Baton alternative”in Ta-
ble 1), it is possible to avoid embedding a certificate chain at
all by retaining all previous versions of AndroidManifest.xml
and the META-INF directory in future versions of the APK.11

Thus, signing a new APK will bind the current Android-
Manifest.xml to the complete history of previously signed
AndroidManifest.xml files. In this alternative implementa-
tion, transitioning to a new set of signing certificates would
require the AndroidManifest.xml to specify the new certifi-
cate in an APK update signed by the currently valid certifi-
cate. This simpler implementation would require more in-
volvement from developers to ensure that all prior versions of
the META-INF directory are retained. Jarsigner would need
to be invoked independently once the application archive is
created. With Baton, certificate delegations only add a few
lines to AndroidManifest.xml instead of creating an archive
of past files containing mostly no-longer valid data.

AOSP Implementation.
We modified The Android Open Source Project (AOSP)

code to implement the Baton certificate verification function-
ality. The proposed set of patches totals under 500 lines of
code which we plan to make available under an open source
license compatible for inclusion in AOSP.

The android.content.pm.PackageParser core class was
modified to correctly process of the new AndroidManifest.xml
entries. In the AOSP services sub-project, the com.android.
server.pm.PackageSignatures class was modified to store a
SignatureChain reference, populated by the PackageParser.
When the com.android.server.pm.Settings class loads or

11The hash tree structure of MANIFEST.MF allows the signa-
ture on a single file to be verified.

http://www.w3.org/TR/xmldsig-core/#def-SignatureDetached
http://www.w3.org/TR/xmldsig-core/#def-SignatureDetached
http://www.w3.org/TR/xmldsig-bestpractices/


Figure 2: Version update diagram depicting updates that are allowed by stock Android (icons depicted over
an arrow) and by Baton (icons depicted under the arrow). SigA(V n) and SigB(V n) are signatures on application
version n with signing keys A and B, respectively. In all cases, updates are only allowed if signatures are
successfully verified.

stores the on-disk packages.xml file, the SignatureChain is
responsible for writing its own representation to the file, and
restoring it when the operating system boots.

In addition to modifying existing classes, we created a
new class (com.android.server.pm.SignatureChain). This
class serves as an in-memory representation of the XML cer-
tificate chain from the AndroidManifest.xml . It contains the
logic for reading the SignatureChain to and from XML, as
well as verifying delegation token signatures.

Finally the com.android.server.pm.PackageManagerSer-
vice class was modified to instrument the stock signature
verification logic and package update procedure. When
the modified PackageManagerService processes an update
for an installed application, it will compare the installed
application’s set of signing certificates to the proposed
update’s set of signing certificates. If the sets match, the
update proceeds following the existing Android certificate
continuity policy. If the certificate sets do not match, then
the PackageManagerService ensures that the proposed
update must contain a delegation token for the correct
version transition (i.e., for the currently installed version to
the update’s version) endorsed by the installed application’s
certificate set. The version transition may be endorsed
through one or more intermediate delegation tokens allow-
ing the update to proceed in the event the user has missed
interim updates.

The AOSP project does not include the javax.xml.cry-

pto.dsig packages used to verify XML signatures. There-
fore we additionally include the Apache Santuario12 library,
an independent implementation of the xmldsig [1] standard.

Developer Tools.
To facilitate adoption by developers, we augment the ap-

plication signing life-cycle by integrating with the develop-

12http://santuario.apache.org/

ment environment used to produce Android application re-
leases. As of writing, the official Android Developer Tools
(ADT) plugin for Eclipse13 is closed source, impeding our
ability to enable Baton support directly. In lieu of a patch
to ADT, we have opted to provide a third party Eclipse plu-
gin. After installing the Baton plugin in Eclipse, developers
are able to export their Android projects as a Baton-enabled
APK. In addition to the Eclipse plugin, our developer tools
can operate as a stand-alone GUI, or a command line tool.
The stand-alone versions of the plugin are better suited for
integration with other IDEs that support external tools, or
with more complex build management systems often used
with large software projects.

To begin the process, the developer is prompted to se-
lect one or more signing certificates to endorse for future
updates, or to enter a certificate fingerprint. For example,
this may be a certificate generated by the new owner of the
project if the developer is transferring control (e.g., selling
to another developer) of their application. The certificate
may also be locally generated. The developer must also
choose one or more signing certificates whose corresponding
private keys will be used to sign the delegation token. In
practice the developer will most often select the signing cer-
tificates presently used to sign production releases of their
project. The version code and the package name values in
the token are pre-filled from the values in the AndroidMan-
ifest.xml file. If necessary, the developer will be asked to
enter a passphrase to unlock the private key. After unlock-
ing the private keys (if required) the XML for the delegation
token is generated, following Protocol 1. It is signed, and in-
serted into the certificate chain in the AndroidManifest.xml
file. The token is also displayed on-screen to allow commu-
nication of the token to other parties if required.

13http://developer.android.com/tools/index.html

http://santuario.apache.org/
http://developer.android.com/tools/index.html


<manifest ... >
...
<certificate -chain >

<delegation -token android:versionCode=
"10">

<previous -certs >
<cert encoded="..." fingerprint=

"907 EB3F2E8447054446A2A4B3ED8CA78DB04B188"
/>
</previous -certs >
<current -certs >

<cert fingerprint=
"6E532E87A468052DA2EE8E9D6E56080181D3E2F9"

/>
</current -certs >
<previous -token hash="null" />

</delegation -token >
</certificate -chain >

<ceritificate -chain -signatures >
<delegation -token -signatures >

<Signature >
....

</Signature >
</delegation -token -signatures >

</certificate -chain -signatures >
...

</manifest >

Figure 3: Example Baton certificate chain entry
in AndroidManifest.xml . Base64 encoded certificate
content and non-Baton related Android entries re-
moved for brevity. Signature element defined in
xmldsig [1] standard.

5. EVALUATION
This Section discusses compatibility of Baton with other

signature-based security mechanisms and previous versions
of the OS. Additionally, we perform a security analysis of
Baton.

5.1 Compatibility

Compatibility with Related OS Functions.
Android currently uses code signing certificates for secu-

rity operations outside of application update integrity. Code
signing certificates provide a form of access control, selec-
tively allowing applications to join a shared UID group or
to be granted a signature permission (see Section 3). At
application install time, for the application to be allowed
access to a signature protected resource (e.g., UID group or
permission), the certificates on the application must be iden-
tical to those associated with the protected resource. This
requirement remains unchanged in Baton.

Using Baton, if one application in a shared UID group or
an application providing a signature protected permission
transitions to a new set of signing certificates, the certifi-
cates associated with the group or permission within the
OS are updated to reflect the transition. As a consequence,
future updates to other applications in the UID group, or
requesting the signature permission must also transition to
the new set of signing certificates.

We have designed Baton such that developers cannot issue
a certificate transition to one application that “evicts” other
applications from a UID group by changing the associated

certificate set. This behavior is consistent with Android’s
current model, where applications cannot arbitrarily change
UID groups during updates.14 An eviction would, by defini-
tion, change the UID of the evicted application, leading to an
inconsistent state. Our design instead honors the member-
ship of already installed applications until they are updated.
This prevents previously functional applications groups from
losing functionality (by evicting a member) while introduc-
ing no detrimental security properties.

Enabling Compatibility with Stock Android.
Application releases that perform a certificate transition

using Baton must package a modified AndroidManifest.xml
containing a Baton certificate chain in the released APK. For
this reason, we consider the compatibility of the modified
application release with existing versions of Android (i.e.,
those without Baton).

At application install-time, the Android OS parses the An-
droidManifest.xml using the android.content.pm.Package-
Parser class (located within the frameworks directory of
AOSP). Once patched to enabled Baton support, the An-
droid OS is aware of the new XML tags introduced for the
certificate chain (see Figure 3), and can react accordingly.
The default unmodified behavior of the PackageParser class,
as of the time of writing, sets an internal RigidParser con-
stant to false, causing unrecognized XML tags to be skipped
without error. Based on the behavior of the code in AOSP, if
an application carrying a delegation token is installed on an
unpatched OS, the certificate chain will be ignored. The ap-
plication will still install correctly pending successful (stock)
certificate continuity validation.

If the Baton patches were merged into AOSP, we recom-
mend developers who release applications containing a Baton
certificate chain use the android:minSdkVersion parameter
in AndroidManifest.xml to preclude install on systems lack-
ing Baton support. It seems unavoidable that users without
Baton support may only install application updates signed
with a different set of signing certificates by first uninstalling
the old application.

5.2 Implementation Evaluation

Standard Update.
We tested Baton by creating multiple releases (each with

an incremental version code) of a test application, and side-
loading each version on to an emulated Android environment
in various orders (e.g., V1→V2→V3, V1→V3, V2→V3→V1).
All releases were signed with the same signing certificate and
used the same package name. As per stock Android policy,
updates succeeded but downgrades did not. The user expe-
rience was no different in the Baton environment and in the
unmodified Android environment.

Certificate Agility.
We created a sample application with an embedded Ba-

ton certificate chain and tested delegating signing authority
from one certificate to another (keeping the package name
the same). After installing the application signed with one
certificate, the app was transitioned to a new certificate by

14https://android.googlesource.
com/platform/frameworks/base/+/
d0c5f515c05d05c9d24971695337daf9d6ce409c

https://android.googlesource.com/platform/frameworks/base/+/d0c5f515c05d05c9d24971695337daf9d6ce409c
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embedding a token generated by the Baton developer tools
in an update. Baton successfully validated the delegation
token, and user data related to the test app was preserved
and accessible by the application with the new certificate.
We also tested changing certificates but not including the
Baton certificate chain, as well as changing certificates and
including an invalid certificate chain. These updates failed
with the “failed inconsistent certificate error” thrown by the
Android OS as expected.

AOSP Unit Tests.
We ran the bundled unit tests for the PackageManagerSer-

vice class. These unit tests are included with the AOSP
source code and are used for automated testing and to pre-
vent any bugs from being introduced to previously functional
code. We checked that the Baton system introduces no such
regression errors by running the unit tests and verifying that
a Baton patched system passes the tests without failure or
warning.

AOSP Code Inspection.
We searched the AOSP source code tree looking for refer-

ences to signing certificates. Code found interacting with the
PackageManagerService or with the Signature objects used
internally to represent code signing certificates was manu-
ally inspected and examined for conflicts with Baton. No
conflicts were discovered.

5.3 Security Analysis
Here, we analyze Baton under the security objectives and

threat model presented in Section 4.1.

No Unauthorized Updates. Baton does not modify the
requirements of Android’s standard certificate continuity ver-
ification. Baton only introduces cryptographic verification of
certificate chains. Thus, with Baton, an adversary must still
compromise a developer’s private signing key to issue an up-
date or create a valid certificate chain to transition to a new
signing certificate.

The certificate chain and delegation tokens in Baton are
included in the AndroidManifest.xml . They are not secret;
digital signatures provide integrity protection. Deleting the
chain or delegation tokens inside the AndroidManifest.xml
has the same effect as removing a signature from an An-
droid package (deleting the META-INF directory, also known
as signature stripping [8]). Apps without a Baton certificate
chain or META-INF directory will fail to validate as legitimate
updates and will not succeed in replacing an installed binary.

No Replays. Delegation tokens include a package name,
version code, and are digitally signed. Replaying a delega-
tion token on a different application (i.e., copying the rele-
vant section of the AndroidManifest.xml file into an applica-
tion with a different package name) will prevent successful
chain verification. Certificate transitions do not succeed un-
less all tokens in the chain reference the package name being
updated, and corresponding signatures can be verified.

Mitigating Social Engineering. With Baton, users apply
app updates as usual. However, unlike with stock Android,
there is no legitimate reason to require the user to manu-
ally uninstall applications for the purpose of a key update.
Training users that sometimes this action may be required

(which is the case, as of writing) can lead to social engineer-
ing attacks by malicious developers; Baton eliminates the
need to do so, reducing this risk.

No Unauthorized Interaction. Baton does not modify
UID sharing nor signature permission requirements. Appli-
cations must be signed with the same signing key(s) at in-
stall time to leverage signature privileges (see Section 5.1).
It is not possible to leverage Baton to arbitrarily join a UID
group for which a key is not held.

6. DISCUSSION
This Section discusses practical implications of enabling

key agility on Android.

6.1 Certificate Expiration
The Android OS currently ignores the validity of sign-

ing certificates at install time, despite official documenta-
tion stating otherwise [4]. As of Android 4.2, we have ver-
ified that it is possible to install (without warning or user
intervention) apps with a signing certificate that has ex-
pired. Additionally, the Google Play Store requires that
all apps submitted carry a certificate valid for at least 25
years, making expiration verification redundant for market-
place installations. With Baton, certificate renewal becomes
possible, which re-enables the possibility of enforcing cer-
tificate validity. Enforcing expiration may limit the impact
of key compromises (see below) and allow the optional use
of CA-issued signing certificates that have more generally
acceptable validity periods (e.g., 1–5 years).

Baton could be modified to limit the time during which an
expired certificate can be used to authorize a key delegation.
For example, limiting the ability for an expired certificate to
authorize a key delegation one year after expiration. This
mechanism can help reduce the exposure window where an
adversary can gain access to an expired private key and roll it
over to a new malicious key, while giving developers ample
opportunity (e.g., one year) to acquire and authorize new
certificates after expiration.

6.2 Private Key Compromise
In the current Android security model, if a developer’s

private signing key is compromised by an attacker (e.g., by
physical keystore theft or by exploiting a crypto implemen-
tation bug [18]), the attacker may permanently release unau-
thorized updates. If the signing key is used on an app dis-
tributed on an application marketplace, the attacker would
need to successfully gain access to the marketplace account
to publish an update. Alternatively, the attacker could con-
vince users to sideload the unauthorized version (e.g., from
a non-official site). Similarly with Baton, unauthorized up-
dates will be possible if keys are compromised. This includes
both standard updates as well as updates with a certificate
chain. Developers using Baton must protect signing keys as
usual. However, if key compromise or a crypto implementa-
tion bug is detected in a timely fashion, it may be possible
for the legitimate developer to issue a Baton app update be-
fore the adversary, effectively “locking” users who upgraded
into a new uncompromised replacement signing certificate.

6.3 Transferring Authority
Using Baton, developers can delegate signing authority to

the holder of a different key, but the original certificate and



corresponding key pair will remain authorized for issuing
updates to versions of the app not containing the certifi-
cate chain. For example, when an app is being sold, the
seller may continue to issue updates to the app under the
original key (see V2SigA →V3SigA in Figure 2). Clients
who do not update to the Baton version (V3SigB) may be
tricked into installing updates with the old signing certifi-
cate instead. While there is generally a trust relationship
established when ownership of an app is being transferred
(e.g., the buyer is already exposed to potential backdoors in
the app), best practices would encourage revoking the orig-
inal certificate from updating the app. This must be a finer
grained revocation than certificate revocation: a seller of an
app may have other apps signed with the same certificate
that are not being sold. We consider two conditions—with
and without a marketplace—under which apps could require
a proper transfer of signing authority.

Assisted by a central marketplace. When an app is
installed through an application marketplace, there are ef-
fectively two authentication mechanisms in place to ensure
source continuity: the signature enforced at the OS-level and
the developer account with which the app is associated at
the market-level. Application marketplaces such as Google
Play allow developers to transfer apps to another account,15

which effectively prevents an app seller from continuing to
issue updates through the marketplace. For marketplace
users, app updates will proceed as usual. Users who in-
stall apps from multiple markets or by sideloading may still
be vulnerable to installing unauthorized updates that are
signed with the original developer’s key.

Without a central marketplace. When users install
apps from only side-loaded sources, it seems difficult to com-
municate the revocation of a certificate’s signing authority
over a specific app. Certificate revocation remains an open
problem in self-signed environments, where no single entity
is authoritative except perhaps the OS itself.

Detection instead of prevention. It could prove ad-
vantageous to keep a public record of package names and
associated certificate chains as a type of public notary to
identify if different certificate chains emerge for the same
app. This principle can be seen in other domains: e.g., Con-
vergence [25] and Certificate Transparency [2] which aim to
detect fraudulent certificates in TLS. A similar system could
be used in Android to confirm the uniqueness of a certificate
chain at install-time. Baton could be augmented to submit
certificate chains or query valid chains for a given applica-
tion by leveraging an install-time server query mechanism
like that of Barrera et al. [9]. The server-side component,
which reports back on valid or invalid chains, would require
manual curation by experts.

6.4 Applicability Beyond Android
The Baton protocol (see Protocol 1) is designed to be

generically applicable in other decentralized signing envi-
ronments. We only require that signed objects exist in a
collision-free namespace. That is, the underlying OS pre-
vents the existence of more than one signed object with the
same name. In the case of Android, we use package names as

15https://support.google.com/googleplay/android-
developer/contact/publishing

identifiers. However, Linux file system paths could also be
used, resulting in an improvement over the key-locking pro-
posal of van Oorschot and Wurster [24]. Baton also requires
a way to keep track of versions to ensure correct validation
of delegations. Object versioning can be implemented at the
application level similar to Android’s version code, or built
in to the file system itself.

6.5 Limitations
One of Baton’s main limitations is the need for developers

to include the certificate chain (which includes correspond-
ing full certificates) in potentially all16 subsequent versions
after a certificate transition. Failure to include the chain of
certificates would prevent users who have not yet upgraded
to the latest version from seamlessly upgrading, since there
is otherwise no easy way to verify the chain. Android certifi-
cates are typically 600 bytes to 2 kilobytes in size, so overall
application size is not expected to be adversely impacted by
including several certificates. Since certificates and certifi-
cate chains are intended to be public, backup copies may
without risk be stored in the cloud or on a shared drive.

Private key loss, even with Baton, remains a difficult prob-
lem. Losing a signing key means it is no longer possible to
issue a Baton certificate update, unless a signature threshold
system [22] is used. We believe solving this limitation would
weaken Android’s overall security model since a mechanism
to issue an update without the original key could be abused
by an adversary.

7. RELATED WORK
A comparison with proposals [23, 24] closely related to

Baton was given in Section 1.1. In the broader literature on
software updates, Cappos et al. [12] examine security issues
in package managers which commonly distribute verifying
keys as part of the installation media. Samuel et al. [20] de-
scribe a software update framework (TUF) that is resilient
to a number of key compromise attacks. TUF is essentially
an alternate PKI tailored to allow multiple roles (e.g., re-
lease and timestamping) such that an adversary would have
to compromise multiple keys to trick a user into installing
a malicious update. Baton extends Android’s trust-on-first-
use model and focuses on the continuation and delegation of
the initial trust without the need for a central PKI.

Specific to Android, Barrera et al. [8] examine Android’s
update integrity mechanisms, noting the lack of key agility
and briefly discussing the Google Authenticator example.
While the paper has several proposals, including improve-
ments to UID sharing, none directly address key agility, the
goal of Baton. Much of the existing body of Android se-
curity research has focused mainly on three areas: Android
app analysis and malware [14, 16, 28]; permissions [15, 5];
and privilege escalation through IPC and covert channels
[11, 21, 17]. Our work is focused on a less explored area of
the Android security literature: the security of signing keys
and certificate evolution.

8. CONCLUSION
The analysis of real-world examples and high-profile ap-

plications clearly illustrates the need for a mechanism to

16The certificate chain should be included in all subsequent
versions from which the developer wishes to allow transpar-
ent upgrades, or as long as there is reason to believe not all
users have performed the most recent certificate transition.
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allow changing signing keys and certificates associated with
Android apps. We have demonstrated its viability by pro-
viding a practical instantiation which has been tested and
shown to be compatible with the current Android ecosystem.
Baton demonstrates that what are typically considered as
academic best practices for certificate update and package
signing can be moved from theory to practice, to create a
practical and lightweight mechanism that establishes crypto-
graphically verifiable trust chains between certificates. With
Baton, the responsibility of verifying integrity and authen-
ticity of updates is placed on the developer and the OS,
lightening the load on the user.
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APPENDIX
A. COGNITIVE WALKTHROUGH OF THE

GOOGLE AUTHENTICATOR UPGRADE
PROCESS

To illustrate the deficiencies in the process currently re-
quired to modify an application’s signing certificate(s), i.e.,
by requiring users to be involved in updating the applica-
tion, we perform a cognitive walkthrough [26] of the update
process as implemented by Google when switching signing
keys for their Authenticator app (see Section 2). We refer
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to the versions of Authenticator with the initial signing key
certificate17 as Auth1 and the versions with the current cer-
tificate18 as Auth2. Technically, these are considered by the
OS to be distinct applications and thus must each have a
unique package name19. However, users never see package
names on Android. Apps are displayed to the user with an
app name and icon, which are identical in both Auth1 and
Auth2.

A cognitive walkthrough aims to shed light on the user
experience of performing a specific task by relying on the
interface for guidance. In a cognitive walkthrough, the eval-
uator (both a domain and usability expert) performs the
core tasks required of the user and evaluates the experience
against a set of guidelines or heuristics.

We consider a single core task: migrating from an installa-
tion of Auth1 to a fully functional installation of only Auth2.
Since the core task is software installation, we looked to the
literature for usability guidelines for installation, rather than
regular software use, and borrow the installation-relevant
guidelines from a cognitive walkthrough of the installation
and use of Tor [13]. These guidelines, in turn curated from
the literature, are:

(G1) Users should be aware of the steps they have to per-
form to complete a core task [27].

(G2) Users should be able to determine how to perform
these steps [26, 27].

(G3) Users should know they have successfully completed
each core task [26, 19].

(G4) Users should be able to recognize, diagnose, and re-
cover from non-critical errors [26].

(G5) Users should not make dangerous errors from which
they cannot recover [27].

(G6) Users should be comfortable with the terminology
used in any interface dialogues or documentation [26, 19].

A.1 Evaluation
Since Auth2 is technically a new installation instead of an

update (we assume users can perform standard updates),
it will not appear as an update in the Play Store. Thus,
a user of Auth1 must first become aware of the existence
of Auth2 through some other means (G1). Upon launching
the latest (and last) version of Auth1 (v0.91), the user will
encounter a prominent ribbon bar displayed at the top of
the screen noting that the app will “no longer be supported.”
The phrase “Learn More” is offered as a link. The warning
conforms to G6 but does not communicate the idea that a
new version is available (G1), as opposed to the app simply
being abandoned. Users may grasp that no more updates
will be issued and then henceforth ignore the ribbon, never
completing the core task of updating to Auth2.

If the user taps on “Learn More”, they are then informed
in plain language (G6) that a new version is available and are
directed to the Play Store to download it. This information

17SHA: 38918A453D07199354F8B19AF05EC6562CED5788
18SHA: 24BB24C05E47E0AEFA68A58A766179D9B613A600
19Respectively: com.google.android.apps.authenticator
and com.google.android.apps.authenticator2
is sufficient for G1 and G2, and should be displayed directly

in the app screen without requiring a user click-through to
read it. The Play Store page for the application displays no
information that distinguishes Auth2 from the already in-
stalled Auth1—it has the same app name and icon, and no
language about the unusual update process for this partic-
ular app is present. A user may conclude they already have
the app (contra G3). Diligent users, however, will notice the
install button, which does not appear if an app is already
installed (it is replaced with the option to open or uninstall).

If the user clicks to install Auth2, the app installs, auto-
matically launches and transfers the user data from Auth1 to
Auth2. (Technically, arranging for the app to open without
a user click and securely transfer the data, which is private
data used for authentication, requires sophisticated instru-
mentation of both apps by very good developers.) This au-
tomation prevents dangerous errors (G5). The user is then
notified in plain language (G6) that the data has been trans-
ferred (G3) and is prompted to “uninstall the prior version
of the app” (G1 and G2).

If the user clicks to uninstall the app, the OS displays
a dialogue containing the app icon, app name (Authenti-
cator), and question “do you want to uninstall this app”
(G6)? In isolation, this screen does not adequately commu-
nicate to the user that the prior version is being uninstalled.
Were the user instead to cancel the prompt to uninstall,
perhaps believing that they do not want to uninstall what
appears to be the exact app they just installed (based on
the name and icon), they would have on their homescreen
two identical icons with identical names and no indication
of which is Auth1 and which is Auth2. If they manually
uninstalled Auth2, they will lose their data (G5). However,
if they opened Auth1, a warning would appear stating that
the new version is already installed and offering to uninstall
this version (G4). In addition, the user data is no longer
available and the app is no longer functional (G4).

The user may successfully complete the core task by unin-
stalling Auth1 by following the instructions to do so when
prompted during the installation of Auth2, or at any time
later by following the prompts in either Auth1 or Auth2.

A.2 Interpretation of Results
The intention of our cognitive walkthrough is not to crit-

icize Google’s handling of Authenticator’s certificate migra-
tion. If anything, the process was relatively seamless, much
of it automated, with care given to preventing dangerous
errors and allowing recoverability. While there is room for
improvement, this represents a nearly ideal execution of the
certificate update process under the constraints of the OS.
However in the hands of less skilled developers (e.g., with-
out clear instructions or the automation of the data transfer
process upon install), the process could be much more diffi-
cult for users. Since Android currently leaves this migration
process to app developers, we are apprehensive of how bad
a less thoughtful execution could be, and note that a conse-
quence of user error could be data loss.

By contrast, Baton removes all the uncertainty of devel-
oper execution and user behavior from the equation. With
Baton, the same core task can be accomplished through a
standard update indistinguishable from any other update,
which we already assume a user can perform. Thus we
can conclude, even without a cognitive walkthrough or user
study, that any user able to update apps can use Baton to
complete the core task.
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