
Browser Trust Models:
Past, Present and Future

Jeremy Clark & Paul C. van Oorschot

School of Computer Science
Carleton University, Ottawa, Canada

Wednesday June 5, 2013 (9:00am)

1

2

Quick Review: SSL/TLS Protocol

 (as used by HTTPS)

3

Domain.caClient

4

Domain.caClient

Domain.ca’s
Public Key

5

Domain.caClient

Domain.ca’s
Public Key

Negotiation

1) Client lists supported versions & ciphersuites
2) Server selects
3) Server sends public key

6

Domain.caClient

Domain.ca’s
Public Key

Key Agreement

4a) Client chooses secret value & sends to server,
 encrypted with server’s public key; or
4b) Client & server use Di!e-Hellman to derive secret;
 server signs values with its public key

7

Domain.caClient

Domain.ca’s
Public Key

Key Agreement

5) Shared secret is extracted/expanded into
 encryption and MAC keys
6) Client MACs previous messages

8

Domain.caClient Application Data

7) Data is put into records, MAC’d,
 padded (if applicable), and encrypted

 HTTPS (HTTP over SSL/TLS): What can go wrong?

1) Cryptographic security and TLS protocol itself
2) CA & browser trust model supporting TLS

A. Certification
B. Anchoring trust
C. Transitivity of trust
D. Maintenance of trust
E. Indication and interpretation of trust

9

 Overview

This talk will largely be exploring:
 3) Enhancements to the CA/B trust model
 (Certification Authority/Browser)

• specifically: in SSL/TLS as used by HTTPS, how to
 ensure Domain.ca’s public key is authentic & valid

• source: [Clark & van Oorschot] IEEE Symposium S&P 2013,
 “SSL and HTTPS: Revisiting past challenges and
 evaluating certificate trust model enhancements”

10

11

A Peak Ahead ...

Certificate Infrastructure & Trust Model [1]

Some questions related to Certificate Authorities (CAs) & trust:

Who is allowed to become a CA? To anchor trust?
How can this authority be delegated (transitivity of trust)?
How are certificates revoked (maintenance of trust)?
How do users interact with certificate info
(indication, interpretation of trust)?

12

Certificate Infrastructure & Trust Model [2]

Issues related to DNs (X.509 Distinguished Names), namespaces:

essential TLS attribute related to DN is: domain name
put in CN (common name) attr. under Subject, unless 1 or
more domains given in X.509 ext. field: Subject Alt. Name
DV/domain-validated certificates assume domain names
map to correct server IP address

CA must validate cert request is from legitimate entity of
specified Subject name; but who controls the name space?

vanilla browser trust model: any (browser-endorsed) CA
can issue a browser-acceptable certificate for any site

13

Certificate Infrastructure & Trust Model [3]
Issues related to browsers trust anchors & intermediate CAs:

browser vendors embed self-signed CA certs (trust anchors)
site certificate is browser-acceptable if browser can build a
certificate chain leading to trust anchor
100s of trust anchors (from somewhat fewer organizations)
are augmented by intermediate CAs empowered by these

∼1500 CA certs from ∼650 orgs in ∼50 countries are
browser-accepted (2010 SSL Observatory estimate)

intermediate CA cert may be constrained in # of further CAs
that it can delegate to, by {pathlen} basic constraint
intermediate CAs invisible to clients until certs encountered-
thus difficult to preemptively know/remove “bad” CA certs

14

Certificate Infrastructure & Trust Model [4]

 A few other background items :

MITM: view as a type of ``proxy" which breaks
the expectation of SSL providing “end-to-end” protection

aided by fraudulent but browser-accepted certificates
proxy can be set up by various attack vectors
(including claimed “government-compelled” certificates)

validating received site certificate matches URL hostname:
current browsers do okay, but errors more common in
mobile apps (e.g., Android) displaying HTTPS data, cloud
clients, other non-browser software employing HTTPS

15

Main categories of CA/B trust model enhancements

1. Detect or Prevent Certificate Substitution Attacks
- illegitimate (but browser-accepted) certificates

2. Detect or Prevent SSL Stripping
- active downgrade to HTTP: adversary replaces
 references to HTTPS sites by HTTP (POST-to-HTTPS)
- many users ignore security indicators,
 don’t understand warnings, and click through them

3. Increase reliability of revocation

16

8 Properties + 11 Evaluation Criteria
(table columns)

We now discuss properties + evaluation criteria
by which we rate the various new proposals

17

18

[refresh]

Properties offered by various proposals
(not in current HTTPS-CA/B offerings) [1 of 2]

1. Detecting Certificate Substitution (including browser-
accepted certificates for subject domains not controlled)

A1: detects MITM
 (in general: partial if requires blind TOFU)
A2: detects local MITM
 (subset: local DNS cache poisoning, on-path interception)
A3: protects client credential
 (protects password or cookie during HTTPS MITM)
A4: updatable pins
 (resolve false-reject errors when pinned certs change)

19

Properties offered by various proposals
(not in current HTTPS-CA/B offerings) [2 of 2]

2. Detecting TLS Stripping (downgrading HTTPS to HTTP)
B1: detects TLS stripping
(even if HTTPS request doesn't reach true server)
B2: affirms POST-to-HTTPS
(deters POST over HTTP: enforces or uses security indicator)

3. PKI Improvements
C1: responsive revocation
(even when CRLs, OCSP responses unavailable)
C2: intermediate CAs visible
(every one visible to user at any time)

20

Evaluation Criteria for Impact on HTTPS [1 of 3]

1. Security & Privacy
SP1: No New Trusted Entity
 (partial if existing trusted party does more)
SP2: No New Traceability
 (re: parties aware of sites visited over HTTPS)
SP3: Reduces Traceability
 (eliminates such parties, e.g., OCSP responders)
SP4: No New Authentication Tokens
 (e.g., pins, signed OCSP responses)

21

Evaluation Criteria for Impact on HTTPS [2 of 3]

2. Deployability
D1: No Server-Side Changes
 (partial if server changes needed, but not to code)
D2: Deployable without DNSSEC
 (not widely deployed yet)
D3: No Extra Communications
 (new rounds which block completion of connection)
D4: Internet Scalable
 (could support enrolment of all HTTPS servers)

22

Evaluation Criteria for Impact on HTTPS [3 of 3]

3. Usability (as determinable without user studies)
U1: No False Rejects
 (user needn’t distinguish attacks vs. FR of legitimate certs)
U2: Status Signalled Completely
 (vs. user not knowing why HTTPS ``succeeded")
U3: No New User Decisions
 (decisions automated; no new cues or dialogues)

23

Primitives (table rows)

Next: the 16 primitives extracted from the various
new proposals for enhancing the CA/B model

[primitives vs. actual proposals - see later]

24

25

[refresh]

V1: Key pinning (client history)

browser remembers last browser-acceptable public key
from a given site; warns if changed
detects substitution attacks (if previously visited),
even if substitute is browser-acceptable
what to pin:

single public key
entire certificate chain
predicate over specified certificate attributes

CertLock (Soghoian-Stamm) pins issuing CA country;
Certificate Patrol (Firefox extension) pins entire chain

26

V2: Key pinning (server-assisted)

server can specify (in HTTPS header or TLS extension)
which certificate attributes to pin, for how long
HPKP (Google):

servers specify a set of (CA, server) public keys,
one of which must be present each TLS session

TACK (Perrin-Marlinspike):
servers each manage a TACK key used to sign
server's certificates

27

V3: Key pinning (preloaded)

pre-configure a list of pins within browser,
from browser vendor or other parties
avoids issue of blind TOFU (e.g., in V1, V2)
Google Chrome currently:

pins some certificates for its own domains,
others on request

28

V4: Key pinning (DNS)

DNS-based Authentication of Named Entities (DANE)
proposes servers pin their public key in their
DNSSEC record
clients cross-check it

29

V5: Multi-path probing
cross-check if certificate that client receives
matches independent observers

detects local substitution unless all traffic to host tampered
Perspectives (CMU)
refined by Convergence (Marlinspike), also DoubleCheck (Columbia)

more general crowd-sourcing/trust delegation architecture
(objective + subjective)
DoubleCheck probes using Tor

more generally: cross-check any collection of certificate data
SSL Observatory, ICSI Notary, Certificate Transparency (Google)

other subjective trust assertion mechanisms
(by crowd-sourcing or delegated authority):

Omnibroker, Monkeysphere, YURLs, S-Links
30

V6: Channel-bound credentials

passwords, cookies made to functionally depend on
specifics of HTTPS connections

e.g. channel-bound cookies (USENIX 2012)
cryptographically bind authentication value in
cookies to site-specific ``origin-bound certificate"

semi-persistent browser key pair generated on
the fly for mutually-authenticated TLS session
conveying OBC-dependent cookie
requires no user action (no new UI elements)
revised: channel ID

31

V7: Credential-bound channels

prevent credential theft via MITM
same goal as V6, but by reversing that idea

V6 has server accept credential if properly bound
to semi-persistent client certificate
here client accepts server certificate
based on its binding to client credential
assumes pre-shared password
DVCert (GerogiaTech): server uses PAKE-based
protocol to show knowledge of client password

32

V8: Key manifest / Key agility
part of functionality of pinning/multi-path probing
changes in legitimate server certificates are difficult to
distinguish from attacks, so use either

a) key manifest (flexible list of possible-keys), or
b) key agility update mechanism for new certificates, e.g.,

• sign new certificate with old key; or
• link certificate changes via master secret

examples: server-assisted pinning, TACK, DANE, DVCert
Sovereign Keys (Eckersley): servers publish long-term signing
keys to certify service keys via a form of cross-signature

33

V9-V11: HTTPS-only pinning (server, preloaded, DNS)

addresses TLS stripping - above primitives don’t since begin
only on HTTPS connection request, which client never gets
configure domains to only support TLS, inform clients with
pin communicated by server: in request headers or TLS
extension, by a browser pre-load, or through a DNS record
ForceHTTPS and its refinement HSTS (server-initiated pins)
Chrome 22 has over 100 HTTPS-only pins (preloaded)
some browser extensions like HTTPS Everywhere redirect to
HTTPS version of designated sites using a domain whitelist
SSR proposal (2006) has a site designated as HTTPS-only in
its DNSSEC-signed DNS record

34

V12: Visual cues for secure POST

to address some TLS stripping attacks, for sites
POSTing login credentials from HTTP to HTTPS site
new persistent security cue signals
if form POSTs to HTTP or HTTPS
SSLight browser extension:

green-yellow-red traffic light in login forms

35

V13: Browser-stored CRLs

revocation remains problematic: unreliable, fails open
4 main methods (V13-V16: respective improvements)

CRLs and OCSP (both currently used in CA/B model)
short-lived certificates
trusted directories

Browser-stored CRLs
vendor (vs. client) periodically fetches CRL distribution
point or OCSP responder data, sends update to browser

36

V14: Certificate status stapling

modifies distribution of OCSP responses
certificate holders periodically acquire a signed,
timestamped status report, to include with
certificates during TLS setup
Example: OCSP-stapling (RFC)

current RFC: only server certificates vs. full chain

37

V15: Short-lived certificates

renew certificates frequently, to limit exposure vs.
long-lived certificates

revoke by simply failing to renew
Example (W2SP 2012):

4-day lifespan = common OCSP response caching time
combined with browser-stored CRL and
(server-assisted) key pinning

38

V16: List of active certificates
trusted directories could publish a publicly searchable list of
certificates (valid certificates, or historical)
could be implemented for HTTPS as whitelist of every TLS
certificate: all servers and CAs, including intermediate CAs

revoke by removal from list
allows domain owners to detect fraudulent certificates
no full proposal but related: Certificate Transparency (Google)

CT log: public record of site certificates, for discovery of
suspicious certificates (vs. an authoritative whitelist)
no removal for revocation; site certificates only

39

40

Summary &
Questions

Extra Slides: Comments on some specific proposals

41

HPKP and TACK

Send (via HTTP header or TLS handshake) the
attributes about your certificate chain you want pinned.

Trust-on-first-use
Server-side changes
Denial-of-service
No new authority

42

Browser Preloads

Certificate attributes are pinned in a preloaded list,
maintained by the browser vendor.

Resolves trust-on-first-use
Minimal server participation
Not scalable to millions of servers
Requires increased trust in your browser

43

DANE

Certificate attributes are pinned in a DNS record for your
domain and distributed with DNSSEC

Resolves trust-on-first-use
Setting record scales to the internet
Distributing records: DNSSEC scalability has been
debated
Records could be stapled into TLS connection
Requires increased trust in DNS system
Could be used with self-signed certificates

44

Perspectives & Convergence

Third party notaries relay information about the
certificate they see for a domain.

No server-side changes
Performance penalty and needs high reliability
Domains may have multiple certificates (load-
balancing)
Privacy issues
Trust agility: a pro or a con?

45

Certificate Transparency

Certificate authorities publish server certificates in an
append-only log. Sites monitor the log for fraudulent
certificates and report them for revocation

Detection rather than prevention
Increased visibility
Similarities to a notary: performance, tracing, etc.
Di"erences: one authority, sites can staple logs
To reject unlogged certificates, full CA opt-in
Relies on revocation

46

Predictions?

Short-term:

Pre-loading the browser with pins
(and HTTPS-only status, and revocation info)

Long-term:

DNS-pinning (e.g., DANE) and Certificate Transparency

47

