
CommitCoin:�
Carbon Dating Commitments with Bitcoin

By Jeremy Clark & Aleksander Essex

Overview

•  We propose a method for creating

commitments that can later be carbon
dated to the approximate time of creation

•  A general method uses moderately hard
functions but has limitations that make it
impractical for deployment

•  CommitCoin resolves these drawbacks by
using the Bitcoin block-chain

2

Proof of Work / Puzzles

•  Cryptographic Puzzles:

– Generate puzzle p with difficulty d from

randomness r	

p=Gen(d,r)	

– Compute solution s to puzzle p	

	

s=Solve(p)	

– Verify solution s to puzzle p	

	

Verify(p,s)	

•  Gen and Verify are efficient; Solve is
moderately hard

3

Related Work on Puzzles

•  Moderately hard function:

– processing time

– memory access time

– storage

•  Applications:

–  time-release encryption & commitments

– metering access to prevent email spam or DOS

– minting coins in digital cash

4

Carbon Dating

5

Ideal Puzzle

•  Two main puzzles: repeated squaring and

hash-based

•  Repeated squaring:

–  Inherently sequential

– Verifiable by only creator (and easy to solve by

creator)

•  Hash-based

– Creator can also solve it while anyone can verify

(non-interactive)

–  Trivially parallelizable

6

Carbon Dating

7

•  Drawback 1: no ideal proof of work protocol

•  Drawback 2: must devote CPU

•  Drawback 3: consider predicating an

election outcome, nothing stops you from
carbon dating commitments to each
possible outcome

•  Drawback 4: carbon dating is very fuzzy:
too fuzzy to be useful?

Bitcoin

•  Bitcoin is a digital currency

•  A public transcript of every transaction is
maintained by a group of nodes

•  Sufficient to only understand this transcript
(“block chain”) to understand CommitCoin

8

9

Transac'ons	

H(Bi)	

H(Bi-1)	

Block:	
 Bi	

Transac'ons	

H(Bi)	

Block:	
 Bi+1	

10

Transac'ons	

H(Bi)	

H(Bi-1)	

Block:	
 Bi	

Transac'ons	

H(Bi+1)	

H(Bi)	

Block:	
 Bi+1	

11

Transac'ons	

H(Bi)	

H(Bi-1)	

Block:	
 Bi	

Transac'ons	

H(Bi+1)	

H(Bi)	

Block:	
 Bi+1	

Transac'ons	

H(Bi+2)	

H(Bi+1)	

Block:	
 Bi+2	

12

Transac'ons	

H(Bi)	

H(Bi-1)	

Block:	
 Bi	

Transac'ons	

H(Bi+1)	

H(Bi)	

Block:	
 Bi+1	

Transac'ons	

H(Bi+2)	

H(Bi+1)	

Block:	
 Bi+2	

	

Amount:	
 100	
 BTC	

To:	
 [PubKey	
 Fingerprint]B	

From:	
 [PubKey]A	

Signed:	
 By	
 A	

13

Transac'ons	

H(Bi || ni)	

H(Bi-1)	

Block:	
 Bi	

Transac'ons	

H(Bi+1 || ni+1)	

H(Bi)	

Block:	
 Bi+1	

Transac'ons	

H(Bi+2 || n1+2)	

H(Bi+1)	

Block:	
 Bi+2	

Each	
 hash	
 is	
 a	
 proof	
 of	
 work.Find	
 an	
 	
 ni	
 such	
 that:	

	
 H(Bi || ni) = {0}d || {0,1}n-d

Takes	
 2d-1	
 hash	
 evalua'ons	
 on	
 average	

	

Can	
 be	
 parallelized	
 (without	
 storage:	
 suitable	
 for	
 GPU)	

	

CommitCoin

•  Idea: insert commitment into the block

chain, and the chain of proof of works will
provide carbon dating

•  Resolves the need to devote a CPU

•  While parallelizable, variance in

computational power across network is
smaller than a singe individual

•  Largest pool reports 242 hashes/s

14

CommitCoin

•  Question: how to insert?

•  Solution 1:

– Find a unchecked field in the transaction spec

– Drawback: could be patched

•  Solution 2:

– Set commitment value to public key fingerprint

– Drawback: “burns” money

15

CommitCoin

•  Set commitment value to ECDSA private key

•  Commitment is randomized; functions as key

•  Send 2 units of BTC to corresponding public

key (fingerprint added to transcript)

•  Send 1 unit back to originating account (public

key added to transcript)

•  Send 1 unit back using same randomness

(private key/commitment computable from
transcript)

16

Application

•  Scantegrity is a verifiable voting system

•  It uses pre-election commitments that are used after

the election to prove the tally is correct

•  Simple attack: change pre-election commitments

after the election

•  Detectable: by verifiers who obtain commitments

before the election (but is this really universally
verifiable?)

•  In 2011 Takoma Park election, we used
CommitCoin

•  Known pivot and negligible probability that an
unsound pre-election commitment will verify

17

Drawbacks Revisted

18

•  Drawback 1: no ideal proof of work protocol

– Sidestep parallelization issue

•  Drawback 2: must devote CPU

– Use Bitcoin

•  Drawback 3: can carbon date commitments to
linearly many messages

– Scantegrity pre-election commitments is large

space

•  Drawback 4: carbon dating is very fuzzy: too

fuzzy to be useful?

– Can pre-commitment months before election day

19

