
On the Use of Financial Data as a Random Beacon∗

Jeremy Clark
University of Waterloo

j5clark@cs.uwaterloo.ca

Urs Hengartner
University of Waterloo

uhengart@cs.uwaterloo.ca

Abstract

In standard voting procedures, random audits are one method
for increasing election integrity. In the case of cryptographic
(or end-to-end) election verification, random challenges are of-
ten used to establish that the tally was computed correctly. In
both cases, a source of randomness is required. In two recent
binding cryptographic elections, this randomness was drawn
from stock market data. This approach allows anyone with ac-
cess to financial data to verify the challenges were generated
correctly and, assuming market fluctuations are unpredictable
to some degree, the challenges were generated at the correct
time. However the degree to which these fluctuations are un-
predictable is not known to be sufficient for generating a fair
and unpredictable challenge. In this paper, we use tools from
computational finance to provide an estimate of the amount of
entropy in the closing price of a stock. We estimate that for
each of the 30 stocks in the Dow Jones industrial average, the
entropy is between 6 and 9 bits per trading day. We then pro-
pose a straight-forward protocol for regularly publishing veri-
fiable 128-bit random seeds with entropy harvested over time
from stock prices. These “beacons” can be used as challenges
directly, or as a seed to a deterministic pseudorandom generator
for creating larger challenges.

1 Introductory Remarks

In many countries, including the United States, elec-
tronic elections have become predominant. Some elec-
tronic voting technologies additionally provide a paper-
based record of each vote—e.g., optical scan and DRE
machines with voter-verified paper audit trails. This pa-
per record can be compared with the electronic tally, and
while both tallies could be consistently manipulated, this
check does provide some level of assurance that the elec-
tronic tally is correct. It is not feasible to perform this

∗Full version. Contains some corrections and revisions to the ver-
sion that appeared at EVT/WOTE 2010.

check for all precincts; however by randomly selecting a
small number of precincts in an unpredictable way, ex-
cellent statistical assurance of the consistency of these
tallies can be achieved.

This mathematical approach to protecting against er-
rors and manipulation in elections can be taken a step
further. Cryptographic voting systems use mathematical
techniques throughout the entire voting process to pro-
vide a stronger notion of integrity: even if all the records
of all the ballots are subverted, the manipulation will be
reliably detected. In many cryptographic systems, assur-
ance is established by challenging the system to prove
computations were performed correctly. As with choos-
ing precincts, challenges in cryptographic voting must be
random.

This paper is concerned with choosing a source of ran-
domness to generate these random selections or chal-
lenges. We will speak abstractly and phrase the nature
of the random action as selecting units to audit (follow-
ing [36]). It is hopefully intuitive that if the source of
randomness used to select units is predictable or can be
influenced, the statistical assurance loses strength.

One proposal for an unpredictable source of random-
ness is financial data (we review a number of other pro-
posed methods in the next section). While not broadly
adopted, this technique has been used in at least two
binding cryptographic elections: a university election
with Punchscan [21] and a municipal election with
Scantegrity II [11]. In both cases, cryptographic tools
were used to transform the random financial data into a
useful form. This may lead some to object to using this
type of protocol in non-cryptographic voting contexts,
like precinct selection. Our position here is neutral—its
application to cryptographic voting is motivation enough
for this study, and we note that if cryptographic tech-
niques were permissible for use, then this approach does
provide a more publicly verifiable challenge than, say,
rolling dice in a room.

It may be acceptable to the reader that financial data,

j5clark@cs.uwaterloo.ca
uhengart@cs.uwaterloo.ca

like stock market prices, exhibits some unpredictable be-
haviour, but it is not likely intuitive how much random-
ness there is. In this paper, we combine a model from
computational finance with techniques from information
theory to estimate the amount of entropy in the daily
closing prices of a number of common stocks (the same
set used in the Scantegrity II election). In our sample, a
typical closing price has an estimated 6–9 bits of entropy.
When we consider the joint entropy between two highly
correlated stocks, we find that the joint information is
less than a single bit, suggesting that using a portfolio of
stocks is a good method of increasing the pool of entropy.

Finally, we present a straight-forward protocol that can
be used to take the prices in their raw form and produce
a near-uniform random bit string. Our intention is that
some entity will publish the output from our protocol on
each day that the market closes as a service. As an in-
centive to offering this service, we allow the entity to
mix in their own randomness. This is done in a way that
is transparent and verifiable to everyone to ensure that
the entity will be caught if it misbehaves. The output can
then be used either directly to select units for auditing, or
if many bits are required, the output can be used to seed
to a pseudorandom generator. The output is also useful
for non-voting cryptographic protocols where a beacon
or common reference string is required.

Contributions. In this paper, we present the following:

• a general technique for estimating the amount of
entropy in a stock market closing price that is ex-
tensible to any simulatable model in computational
finance,
• a set of empirical estimates of the entropy in a repre-

sentative portfolio of stocks, under the conservative
assumption that the Black-Scholes model holds for
market behaviour,
• a demonstration of the impact on entropy that the

four parameters—drift, diffusion, initial price, and
time period—have within the range of our data,
• an estimate of the mutual information shared by cor-

related stocks within the same business sector, and
• a protocol for regularly publishing verifiable ran-

dom bitstrings based on stock prices.

2 Related Work

2.1 Public Randomness in Cryptography
Many cryptographic protocols require randomness. For
most applications, the randomness is only for private use.
However, in some scenarios, publicly verifiable random-
ness can be useful. Two examples are fair exchange and
interactive proofs.

In multiparty protocols, it is sometimes advantageous
for a malicious party to abort early after they have re-
ceived information from the other parties and prior to
sending their own. An early proposal to mitigate this
threat in the case of contract signing, due to Rabin, intro-
duced the notion of a beacon, which is an unpredictable
and random value published at regular intervals by a
trusted third party [35]. Later, contract signing protocols
without beacons were proposed [22].

In interactive proofs, including those with the zero
knowledge property, a verifier interacts with a prover
to become convinced of some fact. A common form
of an interactive proof follows three steps (sometimes
called a sigma protocol): the prover commits to some
information, the verifier generates a random challenge,
and the prover, bound to the information they commit-
ted to, must respond convincingly to the challenge. In
the earliest model, due to Babai, the verifier was bound
to only producing random bits visible to both the prover
and verifier— public coins [5]. Goldwasser and Sipser
later proved that this class is, for all practical purposes,
equivalent to a class with coins that are visible to only
the verifier: private coins [26]. A party independent of
the verifier can also become convinced of the proof if
they believe the coins were random and unpredictable to
the prover. In protocols where the verifier’s role is only
to choose a random challenge, Fiat and Shamir showed
that the verifier can sometimes be eliminated entirely
by hashing a transcript of the protocol up to that point
and using the output as the challenge, making the proof
non-interactive [24]. More recently, Groth and Sahai
(among others) demonstrated non-interactive proof sys-
tems without random challenges at all, based on bilinear
pairings [27].

When random (but not necessarily unpredictable) bits
are assumed to be available for reference, a protocol
can be described in the common reference string (CRS)
model [8]. In addition to making interactive proofs non-
interactive, CRS can be used to achieve security under
composition. While the CRS model is very rigid about
the distribution the CRS is drawn from, recent work due
to Canetti et al. has shown results with an imperfect CRS
called a sunspot [10].

2.2 Public Randomness in Elections

Public randomness is used in post-election auditing pro-
cedures, usually for the selection of precincts for manual
recounts. Cordero et al. establish a set of desirable prop-
erties for generating the randomness: it should be simple
to understand, efficient to execute, difficult to manipu-
late, and verifiable after the fact [16]. The authors con-
sider a number of possible mechanisms: cryptographic
coin tossing protocols, drawing tickets from a hat, lottery

2

machines, random number charts, shuffling cards, flip-
ping physical coins, and rolling dice. They then devise
an algorithm for random precinct selection using dice.

Three main criticisms of the dice-based approach are
available. Clark et al. point out that protocol is only
verifiable to those in the room [12], Calandrino et al.
point out that the number of rolls can become infeasi-
ble for reasonably-sized districts [13], and both note the
difficulty of determining whether the dice are fair.1 Ca-
landrino et al. further suggest a hybrid protocol that in-
volves both dice and random draws in order to generate a
seed, which is expanded with a cryptographically secure
pseudorandom number generator (CS-PRNG). They al-
low the procedure to be video recorded to expand verifi-
cation to those not present.

Of the other mechanisms suggested by Cordero et al.,
at least two others have been examined further. Hall
finds that a particular real-world use of a lottery machine,
where numbered ping pong balls were drawn from a hop-
per, yields non-uniform results and proposes a fix [29].
Rescorla examines the use of random number charts,
where a seed is used to index into a random spot in the
chart [36]. Since the chart is limited in size, the seed
is low-entropy (e.g., 16 bits) and the state space is small.
This has various consequences, including difficulty in the
selection of a pseudorandom stream that is statistically
independent of other possible streams. Rescorla finds
that using the same seed with a PRNG yields better prop-
erties. Clark et al. use a different statistical approach but
also find that low-entropy seeds expanded with a PRNG
can be secure.

2.3 Cryptographic Elections

The use of algorithmic or cryptographic techniques, like
(CS-)PRNGs, has been criticized for potential use in
normal elections as being difficult to understand and
computer-reliant [30]. However in cryptographic elec-
tions, where extensive cryptographic techniques are al-
ready being used, it is obviously congruent. In crypt-
ographic voting systems, interactive proofs and argu-
ments are typically used. For this reason, if one ac-
cepts the random oracle assumption, the mentioned Fiat-
Shamir heuristic is often the easiest mechanism to im-
plement. Systems like Helios, used in a binding student
election [2], use this approach [1]. However Fiat-Shamir
is suitable only when the challenges are drawn from a

1Interestingly, this problem has a solution although it appears to
never be mentioned in the voting literature. The solution builds on
von Neumann’s famous result for generating a fair coin from an unfair
coin: flip the unfair coin twice, if it is both heads (HH) or both tails
(TT), discard the trial (output ⊥). If it is heads followed by tails (HT),
output a heads (H), and if it is TH, output T. This can generalized to
n-sided dice [31].

large space—a space larger than that which can be ex-
haustively searched [25]. In both Punchscan and Scant-
egrity, the numbers are used to select half of 10 to 20
units (committed to by the election officials) to audit in
a post-election, cut-and-choose argument that proves the
tally was not manipulated by the officials [21, 11].2 For
this particular audit, Fiat-Shamir is not useable, motivat-
ing the use of public randomness instead.

2.4 Stock Market for Public Randomness

Stock market data has been suggested for use as public
randomness in several publications. Waters et al. pro-
pose a service called a bastion, which is similar to Ra-
bin’s notion of a beacon, only it produces random crypt-
ographic puzzles instead of random numbers [39]. These
puzzles are issued by online services to clients to solve
prior to gaining access, which helps prevent denial of ser-
vice attacks. The authors relate bastions to beacons and
specifically suggest the option of financial market data
for implementing a beacon. A subset of these authors,
Halderman et al., later propose and implement a more
general framework, Combine, for harvesting challenges
from various online data sources, that can include finan-
cial data, to thwart Sybil attacks [28].

Stock market data has also been suggested for ran-
domly selecting an IETF nominating committee, along
with lottery numbers and sporting outcomes [19]. How-
ever in a later update, financial data was specifically ad-
vised to be discontinued because it is not always reported
consistently from all sources [20]. We address this issue
later in Section 3.4.

Finally, stock market data was proposed by Clark et
al. for use in the Punchscan cryptographic voting sys-
tem [12]. This approach of using stock market data is
preserved in the Scantegrity II system, which is related to
Punchscan through contributors and code-base. However
for Scantegrity II, Rivest implements a novel protocol for
converting the portfolio of closing prices into pseudoran-
dom bits.3 Two binding elections were conducted using
stock market data for public randomness: a student elec-
tion in Canada in 2007 with Punchscan and a municipal
election in Maryland in 2009 with Scantegrity II.

2Here, the cut-and-choose argument follows the same three-step
procedure of a zero-knowledge sigma protocol: commit stage, chal-
lenge stage, and response change. It is not a zero-knowledge proof for
technical reasons that are beyond the scope of this paper.

3R. Rivest, 2009. See: get latest djia stock prices.py,
pre election audit.py, and post election audit.py.
https://scantegrity.org/svn/data/
takoma-nov3-2009/PUBLIC/PUBLIC/.

3

https://scantegrity.org/svn/data/takoma-nov3-2009/PUBLIC/PUBLIC/
https://scantegrity.org/svn/data/takoma-nov3-2009/PUBLIC/PUBLIC/

3 Model and Assumptions

Our primary interest in this paper is the use of financial
data as a source of entropy for creating random and un-
predictable challenges. If they are truly unpredictable,
these challenges can be used in cryptographic voting pro-
tocols, particularly zero-knowledge and cut-and-choose
protocols, to eliminate the need of a verifier to gener-
ate the challenges. While this approach could be used
anywhere a challenge is needed, it is especially relevant
when the efficient Fiat-Shamir heuristic cannot be used.
We are motivated to examine stock prices because of
their actual use in binding elections.

Note that random and unpredictable mean subtly dif-
ferent things. If an adversary is able to set a challenge
to a known value, it is not unpredictable to her. How-
ever the value may be statistically random and have high
entropy in that sense. Our approach is careful to model
the uncertainty of the adversary (or anyone) in predicting
the outcome of a stock price. This is different from di-
rectly computing the statistical randomness contained in
financial data, which could lead to a wrong estimate of
the adversarial uncertainty.

In this section, we introduce the model that we will use
to simulate the movement of stock prices. We assume the
reader has no background in computational finance. This
model will be used to estimate of the amount of uncer-
tainty in a stock price in the next section. Here, we also
address some other potential concerns with using stock
prices; namely, manipulation and consistent reporting.

3.1 Terminology
Let Sti be the price of a stock at some time ti. For
time-period T , let S0 and ST represent the stock’s ini-
tial and final price, respectively. Define r to be the risk-
free interest rate: the interest-rate on a safe asset, like
a government bond, with value βti . If r is continuously
compounded over period T , a bond initially worth β0 be-
comes worth βT = β0e

rT .
A Wiener process, Wt, is a continuous time process

with the following properties:

• W0 = 0.
• Wt ∼ N(0, t), where N(0, t) is a normal distribu-

tion with mean 0 and variance t.
• For all intervals in time, tb − ta, ∆W = Wb −
Wa is independent from all other (non-overlapping)
intervals.

A Wiener process is also known as standard Brownian
motion, and since future values of the process depend
only on the current value, it is an example of a Markov
process. Geometric Brownian Motion (GBM) for ran-
dom variable Xt adds a linear constant, µ, to the pro-

cess, which is known as drift, and also scales the variance
of the Wiener process, Wt by the constant σ, known as
diffusion:

dXt = µXtdt+ σXtdWt

WhenXt represents the value of some instrument, µ is
termed the growth rate or expected rate of return. When
this is greater than the risk-free rate, it is termed an ex-
cess return. The diffusion, σ, is termed the volatility.
When volatility is estimated based on past performance
of the stock, it is termed historic volatility.

3.2 Black-Scholes Model
The Black-Scholes model, or Black-Merton-Scholes, is
used to model financial markets and determine the value
of derivatives (a financial instrument whose value is de-
pendent on the value of an underlying asset) [7, 32]. We
only use the model to study the movement of the under-
lying asset; in this case, the assets are stocks. The model
is based on the following assumptions.

1. There are no transaction costs or dividends.
2. Over time, the asset price is a real number: St ∈ R.
3. Over time, the asset price follows a GBM:

dSt = µ St d t + σ St d Wt.
4. Over time, µ and σ are constant valued.
5. There are no arbitrage opportunities.4

Nearly every mathematical model of a financial mar-
ket has its criticisms. Black-Scholes is very well-known5

but has also been controversial, primarily for being too
tame of a representation for markets like stocks or com-
modities. For pricing derivatives, underestimating the
volatility of the market can lead to catastrophic loss
and thus using models with higher volatility, like Jump-
Diffusion models, are a more conservative approach
(however they also lead to less competitive pricing) [38].
In our case, we are using stock prices to generate ran-
dom challenges. It should be intuitive that the entropy in
a stock price will increase with higher market volatility
(if not, we show this in section 4.4), and so the conser-
vative approach for our purposes is the exact opposite.
We use Black-Scholes model because, if anything, it errs
on the side of not having enough volatility and therefore
will be useful in determining a plausible lower-bound on
entropy.6

4Through an argument omitted here (see [38]), this effectively
means µ is modelled with r (the risk-free rate) when pricing options.
Since we are not pricing options, we use historic volatility to estimate
values of µ.

5Merton and Scholes received a Nobel prize for developing it.
Black unfortunately did not live long enough to join them.

6If, alternatively, the stock market is more predictable than Black-
Scholes, our estimates will be wrong. We do not consider this at length

4

3.3 Market Manipulation

Since trades are the mechanism that moves the price of
a stock in the real-world, the closing price of a stock
could be manipulated through unnatural sales or pur-
chases, particularly near the closing time of the market.
This manipulation is theoretically possible and has been
performed on exchanges in developing markets; however
there is broad agreement that it is difficult to perform on
stocks one might find on an established exchange like
the NYSE or NSDAQ. We also note that it is illegal in all
major exchange markets.

If manipulation were possible, it could be used in the
context of cryptographic voting for the following attack:
prior to committing to the election data, an adversary cre-
ates a guess for the closing price of each stock that will be
used. The adversary then determines what the challenge
would be if these guesses turn out to be correct, and hides
any electoral fraud in the units that will not audited under
this envisioned challenge. The manipulated data is then
committed to. Later, the adversary buys shares to raise
the price of any stock that is below the guessed value and
sells shares (short sells, if the adversary does not hold
the shares) to lower the price of stocks over its targeted
price. If all the prices close exactly on target, the fraud
will escape detection.

There are a large number of practical issues with such
an attack (its detectability and illegality, the high volatil-
ity of prices near closing time, the use of matching al-
gorithms in determining a closing price, regulation con-
cerning short selling after downticks, etc.) but it is
theoretically possible. Even if volume is factored into
the randomness, the adversary could choose an unusu-
ally high target volume to avoid overshooting it while
manipulating.

Market manipulation is considered for different rea-
sons by the financial community. One type of finan-
cial derivative that can be purchased is a barrier option,
which operates like a regular stock option (vanilla op-
tion) with the added condition that if the underlying asset
goes above (or below) a predetermined price (the barrier)
at some time interval (such as the daily closing price), the
option becomes worthless. If market manipulations were
feasible, they could be used to bump stocks over (or un-
der) a barrier.

There is broad agreement that this type of manipula-
tion is difficult if the market is volatile and liquid, and/or
if the barrier event must happen multiple times (so-called
Parisian options [15]). An empiric study of manipu-
lations in the NYSE, NSDAQ, and other markets dur-
ing the period of 1990–2001 confirms that manipulations
of this type are rare and confined to illiquid stocks [3].

as it is not an advocated position, even by a minority, within the finan-
cial community, nor is it supported by the empirical evidence.

Despite the theoretic possibility of manipulation, bar-
rier options continue to be written/held by banks and in-
vestors [37]. We also note that these manipulations have
a relatively crude goal: to move the stock up or down. In
the case before us, manipulations would have be highly
calibrated to result in a stock landing on an exact price (to
the nearest cent). For the reasons outlined in this section,
we consider manipulation infeasible with the selection
of liquid stocks on an established exchange. The elec-
tion we are studying used the 30 stocks in the Dow Jones
industrial average, which meets our criteria.

3.4 Official Closing Price

A practical requirement is that closing prices are reported
consistently across publications. For example, in the
Scantegrity II municipal election, both closing prices and
closing volumes (the number of shares traded that day)
were used. Auditor Ben Adida reports that the volumes
that he accessed differed slightly from those used to gen-
erate the challenge, which could be due to differences in
rounding, inconsistent reporting, or after market trades.7

Since the data is being used to generate relatively small
challenges, a malicious election authority could slightly
perturb the volumes from their actual values until a suit-
able challenge is generated that hides any fraud. Even
though this value differs from the reported values, it is
indistinguishable from the scenario where the volumes
were changed by the publisher.

For this reason, we recommend that only closing
prices are used and not volumes. As the value of op-
tions and derivatives depend on the exact closing price
of a stock, infrastructure for publishing a uniform closing
price is in place. The official closing price is algorithmi-
cally determined (e.g., by a closing cross) in a transparent
way and then multicast by the Consolidated Tape Asso-
ciation (CTA), typically 15 minutes after the close of the
markets. It clearly indicates which trades are considered
after-market. Some newspapers or financial data sources
may provide a “closing price” that is adjusted by after-
market trades—these should not be used. A third party
publisher may also make a mistake. We recommend that
election officials (or the beacon service provider) check
the closing prices from a few sources for consensus be-
fore generating the challenge, assuming they do not have
direct access to the CTA multicast.

4 Entropy Estimates

In this section, we use the Black-Scholes model to es-
timate the entropy in a closing price. We illustrate the

7B. Adida. Takoma Park: Meeting 2. http://benlog.com/
articles/2009/11/02/takoma-park-meeting-2/.

5

http://benlog.com/articles/2009/11/02/takoma-park-meeting-2/
http://benlog.com/articles/2009/11/02/takoma-park-meeting-2/

process by using the stock Microsoft (MSFT), which is
included in the portfolio of stocks that we are ultimately
interested in—the Dow Jones industrial average.

4.1 Historical Drift and Diffusion
Figure 1a shows the closing prices of Microsoft from
March 23, 2009 at $17.95 until March 23, 2010 at
$29.88. Let this series be {S0, S1, S2, . . . ST }. In this
case, T = 251 given the number of trading days in the
provided interval. From this data series, we can calculate
the relative price changes using

Ri = ln
(
Si+1

Si

)
, 0 ≤ i ≤ T − 1. (1)

Ri is called the log (or continuously compounded) re-
turn. It is positive for relative increases in the stock price
and negative for decreases. A histogram of Ri values for
Microsoft is shown in Figure 1b with bin size 0.005. The
distribution ofRi for this example is roughly normal, and
any deviation from a normal distribution, as we will now
derive, is evidence against the Black-Scholes assumption
of asset prices following geometric Brownian motion.

With GBM, asset prices are modelled as

dSt = µStdt+ σStdWt. (2)

With a logarithmic transform of St and application of
Ito’s lemma, GBM can be found to have the following
analytic solution:8

St = S0 exp
((

µ− σ2

2

)
t+ σWt

)
. (3)

Due to the Wt term, this solution is a process. Thus if
we are given a set of (S0, St) pairs, we can estimate the
values µ and σ to fit this process.

Let ∆t be the sampling interval relative to the mea-
sured period. For example, if we sample daily prices and
want the annualized distribution, ∆t would be 251. In
our case, we sample daily values to estimate the distri-
bution over the same time-period: one day. Thus we use
∆t = 1. From equation 3, the distribution should be

Ri ∼ N
((

µ− σ2

2

)
∆t, σ2∆t

)
. (4)

By taking our sampled data Ri and computing the
standard deviation, we have an estimate for the daily dif-
fusion σ. In finance, this is called the historic volatility
(although not all volatility measures are calculated the
same way). Next we find the mean of Ri, and estimate
the drift term µ as: mean(Ri) + σ2/2. For the MSFT
data, we find the daily drift and diffusion estimators to
be µ = 0.23% and σ = 1.77% per day.

8Argument omitted for brevity. See an introductory computational
finance textbook, e.g., [38].

(a) MSFT price history

(b) Histogram of Logarithmic Returns

(c) Monte-Carlo Simulations

(d) Histogram of Final Price

Figure 1: Estimating the entropy for MSFT. We (a) im-
port one year of closing prices, (b) measure the rela-
tive price changes using logarithmic returns, extract esti-
mates for drift and diffusion parameters and use these to
(c) simulate the price over the next day, and (d) compute
a histogram of simulated closing prices.

6

A first note on bias. Recall that the Black-Scholes
model assumes that dividends are not paid out. This is
not true for historic data. For the example, the MSFT
data includes four dividend payments of $0.13 each.
This causes the closing price to be adjusted downward.
Thus equation 1 should differentiate between pre- and
post-adjusted prices: denominator Si should be the post-
adjusted price for time i, while numerator Si+1 should
be the pre-adjusted (raw) price for time i+ 1. We found
the difference to be insignificant due to dividends being
infrequent and small, and thus ignored dividends.

4.2 Monte-Carlo Simulation
With estimates for µ and σ, we next consider the distri-
bution of outcomes over the time-period, τ , for which we
want to harvest entropy. To generate this distribution, we
use a Monte-Carlo simulation of the process in equation
3. We discretize τ , which is one day for the MSFT ex-
ample, into m equal-sized steps of size ∆τ . Equation 3
can then be simulated as Algorithm 1.

Algorithm 1: A Monte-Carlo trial for simulating as-
set price movements.

for (0 ≤ j < m) do1

t← T + j ·∆τ2

Zt ←r N(0, 1)3

St+1 ← St exp
((
µ− σ2

2

)
∆τ + σZt

)
4

We begin at ST , the last observed price ($29.88 for
MSFT), and map a possible trajectory to ST+τ by step-
ping through Algorithm 1. Line 2 simply keeps the
timestep notation tidy. Line 3 indicates a random vari-
able drawn from a standard normal distribution. This
variable is used in the next line, in conjunction with the µ
and σ parameters to step the price forward one interval.
We then repeat the algorithm N times to generate many
independent possible outcomes for ST+τ . Figure 1c il-
lustrates the first 10 trajectories, while Figure 1d shows a
histogram of outcomes for 100 000 simulations and a bin
size of one cent.

A second note on bias. Generally, Monte-Carlo is sub-
ject to three types of error. There is the discretization
error due to modelling a continuously random process
with m intervals. In our case, the exact solution in line
3 of Algorithm 1 is unbiased by discretization error be-
cause it is multiplicative. In models other than GBM, the
only known solution may be an additive approximation
instead (for example, GBM itself could alternatively be
approximated by St+1 = St +Stµ∆τ +StσZt which is
called Euler time-stepping). In this latter case, the error

is order O(m−1). The second source of bias is using N
trials to estimate some value. In computational finance,
the value of interest is the mean of theN outcomes. With
both types of error, we reach the often stated total er-
ror of Monte-Carlo methods in computational finance:
O(max(m−1, N−0.5)) [38]. However in our case, we
have an exact solution that eliminates the first term, and
we are interested in the entropy of the distribution of N
trials, not the mean, resulting in a different bias for the
second term. We will discuss how N influences this bias
in the next section after we have defined entropy.

The third possible source of bias is the statistical prop-
erties of the random number generator used for line 2 of
Algorithm 1. We used the default generator in Math-
ematica, which we believe is more than sufficient for
Monte Carlo simulations. It creates a seed from ses-
sional information, uses cellular automata to expand the
seed into pseudorandom bits, and Box-Muller to trans-
form these into a normally distributed number.9 We also
experimented with a Mersenne twister, sometimes rec-
ommended for use in computational finance (e.g., [38]),
and it made no significant difference.10

Why use Monte Carlo? Given that we have an exact
solution for GBM, in equation 3, we could eliminate the
discretization step and generate ST+τ values in a single
step. Instead, we use time-stepping to create an approach
that is easily replicable if one were to swap GBM for a
different financial model where an exact solution is not
known—i.e., mean reversion or jump-diffusion models.
Our aim is to assist the interested reader in studying dif-
ferent models.

4.3 Entropy Estimation
We now consider how much entropy is provided in a
stock price over the course of a day. We first estimate the
Shannon entropy, which provides an average-case mea-
sure of unpredictability, as this has the most intuitive ap-
peal and highlights parameter dependence well. We later
will consider min-entropy, which provides a worst-case
measure. The Shannon entropy of discrete random vari-
able X with probability mass function p(x) is defined
as

H(X) = −
∑
x

p(x) log2 p(x). (5)

Given the results from the Monte Carlo simulation, we
have a list of N possible outcomes for the price of our

9http://reference.wolfram.com/mathematica/
tutorial/RandomNumberGeneration.html

10Linear feedback shift registers, which Mersenne twisters are based
on, are a specific type of cellular automata with a “spiral” boundary
condition. See [40, pp. 1088].

7

http://reference.wolfram.com/mathematica/tutorial/RandomNumberGeneration.html
http://reference.wolfram.com/mathematica/tutorial/RandomNumberGeneration.html

asset. Denote these outcomes P = {P1, P2, . . . , PN},
where Pi is ST+τ for the ith Monte Carlo trial. We round
each outcome to the nearest cent and place it in a set of
bins for each unique price. Since many trials will yield
the same price once rounded, let N̂ ≤ N be the number
of unique outcomes observed (i.e., non-empty bins). De-
fine P̂ = 〈p̂j , P̂j〉, for 1 ≤ j ≤ N̂ , as the set of pairs
where P̂j is a unique price in P and p̂j is the number of
times it appears.

To estimate the Shannon entropy in our set P , we
compute

H(P) = −
N̂∑
j=1

p̂j
N

log2

(
p̂j
N

)
. (6)

This type of estimator is known as a maximum like-
lihood, naive, or plug-in estimator [34]. It works by
distributing the random variable into bins and estimat-
ing p(x) by dividing the number of outcomes in each bin
by the total number of outcomes. The goal of this paper
is to estimate the entropy of a closing price, rounded to
the nearest cent, which is a discrete random variable. So
we use a bin size of one cent.

A third note on bias. Maximum likelihood estimators
(MLE) for Shannon entropy are biased. As with any ran-
dom sampling, some bins may have more values than
they theoretically should and others less and this tends
to average out as N increases. However for entropy es-
timation, an empty bin cannot be included in Equation
6 because 0 · log(0) is undefined. Instead, empty bins
are dropped from the estimate even if theoretically they
should be non-empty. This leads to a negative bias for
MLE and the entropy is lower than it should be.

In our case, we want a conservative estimate of en-
tropy and so negative biases of this sort are not so trou-
bling. However the bias can be corrected if we can pro-
vide an estimate of how many bins have non-zero prob-
ability (relative to the number of samples). To estimate
this value, we take the full range of min(P) to max(P).
Let this be M̂ bins. The Miller-Madow bias [33] of an
MLE is given as

B =
M̂ − 1

2N
. (7)

As stated, it is a negative bias and so the adjusted en-
tropy is: HB(P) = H(P) +B. Other adjustments exist
in the literature [34]. We selected Miller-Madow because
it is computationally easy to compute for large values
of N and appropriate when N > M̂ .11 For the MSFT
data that we have been using to illustrate each step, we

11More precisely, if N/M̂ diverges to∞ as N grows, then HB(P)
will converge on the correct result.

used N = 100 000 and found N̂ = 397 and M̂ = 447.
The MLE Shannon entropy is 7.764 bits and the Miller-
Madow bias is 0.002, which is relatively small.

Min-Entropy. While Shannon entropy provides an es-
timate of the average entropy in a stock price, a worst-
case estimate is needed if we want to extract the ran-
domness out of the price. Given a distribution X , the
min-entropy, H∞(X), is defined as

H∞(X) = − log2(max
x

(p(x))). (8)

In other words, for any possible outcome x, p(x) ≤
2H∞(X). If X is uniformly random, the Shannon entropy
and min-entropy are equivalent. Otherwise, min-entropy
is strictly less. Since H∞(X) is ultimately computed
from one probability p(x) and this value will be non-
zero if the entropy is non-zero, the bias from empty bins
on Shannon entropy does not apply to the notion of min-
entropy.

We use the Shannon entropy estimates to examine the
effect of drift, diffusion, initial price, and elapsed-time
in the next subsection. We use the min-entropy estimate
when we want to configure a random extractor to produce
a short, near uniform-random bit-string from the much
longer set of prices.

4.4 Experimental Results
In the Scantegrity II municipal election, a portfolio of
30 stocks was used.12 These stocks were the companies
that make up the Dow Jones industrial average (DJIA)
— an important financial benchmark. Table 1 shows the
data that we collected and our estimates for each of these
stocks following the approach outlined for the MSFT ex-
ample. The prices were observed from March 23, 2009
to March 23, 2010 (S0 to ST), and these were used to es-
timate the daily drift and diffusion rates: µ and σ. With
these parameters, we simulated the path from the clos-
ing price on March 23, 2010, ST , forward one day in
time using a Monte Carlo simulation with 100 000 tri-
als. The number of unique prices (to the nearest cent) in
our simulation, N̂ , is used to generate an MLE-estimate
for the Shannon entropy: H(P). The estimated number
of expected non-empty bins, M̂ , is used to estimate the
Miller-Madow bias: B. These are combined to generate
our adjusted estimate of Shannon entropy: HB(P). Fi-
nally, we also provide our estimate of the min-entropy:
H∞(P). Pfizer (PFE) had the lowest entropy: 6.83
and 6.10 bits for Shannon and min-entropy respectively,
while Caterpillar (CAT) had the highest at 9.46 and 8.69
bits respectively.

12B. Adida. Takoma Park: Meeting 2. http://benlog.com/
articles/2009/11/02/takoma-park-meeting-2/

8

http://benlog.com/articles/2009/11/02/takoma-park-meeting-2/
http://benlog.com/articles/2009/11/02/takoma-park-meeting-2/

Stock ST µ σ N̂ M̂ H(P) B HB(P) H∞(P)
AA 14.50 0.00338956 0.0354406 386 440 7.72544 0.0022 7.73 6.99
AXP 41.24 0.00512444 0.0365912 1071 1305 9.2823 0.006525 9.29 8.50
BA 72.18 0.00313975 0.0219116 1112 1406 9.34279 0.00703 9.35 8.57
BAC 17.13 0.00455058 0.0468486 588 699 8.37453 0.003495 8.38 7.62
CAT 62.41 0.00352696 0.027272 1173 1540 9.4536 0.0077 9.46 8.69
CSCO 26.64 0.00200486 0.0167037 347 396 7.52981 0.00198 7.53 6.79
CVX 74.77 0.000565046 0.0136131 730 844 8.70798 0.00422 8.71 7.95
DD 38.31 0.0025213 0.0219181 603 751 8.43244 0.003755 8.44 7.69
DIS 34.01 0.00271648 0.0199576 506 596 8.13347 0.00298 8.14 7.39
GE 18.33 0.00264998 0.0239698 335 391 7.50284 0.001955 7.50 6.76
HD 32.59 0.00166033 0.0161739 404 475 7.76791 0.002375 7.77 7.03
HPQ 53.15 0.00234904 0.015783 615 758 8.43501 0.00379 8.44 7.69
IBM 129.37 0.00124652 0.0124436 1121 1460 9.36931 0.0073 9.38 8.60
INTC 22.67 0.0019257 0.0176758 302 352 7.37295 0.00176 7.37 6.63
JNJ 65.36 0.00101973 0.00811278 406 472 7.7723 0.00236 7.77 7.03
JPM 44.58 0.00261719 0.0318482 992 1190 9.18918 0.00595 9.20 8.43
KFT 30.49 0.00134673 0.0129888 314 333 7.35464 0.001665 7.36 6.62
KO 55.30 0.0010976 0.0111199 460 570 7.98678 0.00285 7.99 7.21
MCD 67.35 0.00111279 0.0113681 569 732 8.3043 0.00366 8.31 7.55
MMM 82.35 0.00235099 0.0148201 854 1075 8.97369 0.005375 8.98 8.22
MRK 38.50 0.00162879 0.0166847 486 554 8.05935 0.00277 8.06 7.29
MSFT 29.88 0.0022737 0.0176583 394 449 7.76265 0.002245 7.76 7.04
PFE 17.54 0.00120496 0.01571 216 243 6.82701 0.001215 6.83 6.10
PG 64.53 0.00146004 0.0125241 587 703 8.37914 0.003515 8.38 7.64
T 26.55 0.000357228 0.0121909 251 289 7.05851 0.001445 7.06 6.31
TRV 53.90 0.00154645 0.0188065 734 926 8.7059 0.00463 8.71 7.96
UTX 73.09 0.00232501 0.0159515 835 1015 8.9016 0.005075 8.91 8.14
VZ 30.98 0.000367966 0.0117435 279 320 7.22926 0.0016 7.23 6.48
WMT 55.89 0.000497465 0.010295 431 512 7.89168 0.00256 7.89 7.16
XOM 66.95 0.0000317968 0.012391 604 752 8.41962 0.00376 8.42 7.65

Table 1: The Dow Jones portfolio of 30 stocks. For the Monte-Carlo parameters, we show: initial price (ST), historic
diffusion parameter (µ), and historic drift parameter (σ). For the Shannon entropy estimate, we show: the number of
unique prices in the simulation (N̂), the estimated number of non-empty bins (M̂), the Shannon entropy estimate based
on observed prices (H(P)), the Miller-Madow bias (B), and the bias-adjusted estimate (HB(P)). For the min-entropy
estimate, we show the estimate based on observed prices (H∞(P)).

Drift Diffusion Initial Price Time
µ H(P) σ H(P) ST H(P) τ H(P)

Min 0.003% 6.81 0.81% 8.53 $14.50 7.33 0.5 day 8.03
Mean 0.195% 8.54 1.87% 8.54 $ 48.02 8.54 1 day 8.54
Max 0.513% 9.95 4.68% 8.54 $ 129.37 9.85 2 days 9.03

Table 2: This table shows the result on the entropy of the closing price if each parameter is independently changed
from its average value across the DJIA to its minimum and maximum.

9

We were also interested in the individual effect of drift,
diffusion, opening price, and time-period on the entropy
of a stock. We created a mythical stock with the mean
value for each of these parameters, calculated from the
DJIA data. The stock had µ = 0.195%, σ = 1.87%, and
ST = $48.02 and was simulated over one day. For each
parameter, we individually varied it to the minimum and
maximum observed value for this parameter in the DJIA
data and estimated the resulting Shannon entropy. We
also varied the timeframe from half a day to two days.
The results are provided in Table 2. The entropy was
sensitive to the observed spread in both µ and ST but
largely invariant to changes in σ. In all cases, an increase
in the parameters resulted in an increase in the entropy.

4.5 Portfolio Entropy

We have shown how to estimate the entropy of individ-
ual stocks. But how much entropy is in a collection of
stock prices? From Figure 1, it may be tempting to sum
the entropy estimates for all the stocks and use this as
an estimate of the total entropy in the portfolio. This
approach works only if the stocks are uncorrelated with
each other. In reality, stocks typically display varying de-
grees of correlation with other stocks from, for example,
the same business sector, same country, or when traded
on the same index. This means that the portfolio entropy
is less than the sum of the entropy of the individual stocks
due to mutual information between subsets of the stocks.

We selected the two stocks with the highest correla-
tion and estimated the mutual information between them.
Pairwise throughout the portfolio, the highest correlated
stock pairs are Cheveron and Exxon (0.82 over one year)
which are both large oil and gas producers. Next are JP
Morgan and Bank of America (0.78) which are both large
banks. The mean correlation was 0.42.

Taking Cheveron and Exxon (CVX and XOM), we
generated correlated Monte Carlo paths [38]. To do this,
recall Algorithm 1. We perform this algorithm for CVX.
Denote the value of Zt in line 3 for CVX as ZCt . For
XOM, our second stock, we will run almost the same al-
gorithm; we replace line 4. First denote the output at line
3 as ZXt and let the correlation between CVX and XOM
be ρ. Then the replacement for line 4 is

SXt+1 ← SXt exp
((

µ− σ2

2

)
∆τ

+σ
(
ρZCt +

√
1− ρ2ZXt

))
.

(9)

In other words, ZXt is used as a joint random variable
shared between both stocks.

Using this method, we ran 10 000 000 trials to estimate
the joint Shannon entropy between Exxon and Cheveron.

This was the largest simulation that was computation-
ally feasible for us. Recall from Table 1 that the num-
ber of unique prices observed for Cheveron and Exxon
were respectively 730 and 604. That means the number
of unique price pairs is on the order of 730*604. Thus
our simulation of 10M trials was only one order of mag-
nitude greater than the number of observed events and
our result is a quite sparse histogram from which the es-
timates will be sufficiently biased. We found that the
joint entropy was 15.96 bits compared to the sum of their
individual entropies: 16.90 bits. That means the mutual
information is at most 0.94 bits. Again, we did not adjust
for bias (Miller-Madow is best when the trials are much
larger than the outcomes) and so the mutual information
is likely less than this. For min-entropy, the result is 1.04
bits.

We leave a rigorous analysis of mutual information in
the entire Dow Jones index for future work. As men-
tioned, computing the joint entropy between two stocks
is very difficult as it is: the number of bins squares,
as does the number of trials needed to create a suitably
dense histogram. Methods exist for estimating bias when
the trials are less than the number of bins [34] but it is not
obvious how to extend these estimators to more than two
random variables. Computing the joint entropy between
30 stocks does not seem computationally feasible, even
if the trials could be less than the resulting bins by a poly-
nomial factor.

We can provide a very crude estimate by making a
generous assumption. Recall the chain rule for joint en-
tropy is as follows:

H(P1,P2, . . . ,Pn) =
n∑
i=1

H(Pi|Pi−1, . . . ,P1). (10)

We could estimate the H(Pi|Pi−1, . . .) term for each
stock as: H(Pi) − max(i,j 6=i) (I(Pi,Pj)). This would
hold if the worst-case mutual information between any
two stocks in the portfolio was less than the mutual in-
formation a given stock has with the rest of the portfo-
lio. In other words, any mutual information Cheveron
shared with a stock other than Exxon (because of simi-
larities in sectors, country, exchange, etc.) would already
be accounted for in the mutual information it shares with
Exxon. This is crude and the estimate should be treated
only as a ballpark figure. For the DJIA under this as-
sumption, the Shannon entropy is 218 bits and min-
entropy is 192.

5 Beacon Implementation

We have estimated that the closing price for a single
stock in the DJIA provides between 6 and 9 bits of en-
tropy, and we have shown that adding additional stocks

10

increases the entropy. In this section, we consider how
to convert a list of closing prices into a form that is use-
ful for general cryptographic protocols. Since the field of
cryptography has conventions in notation that sometimes
conflict with conventions in computational finance or in-
formation theory, we will, in a small number of cases,
redefine variables in this section.

Let Pi be a list of closing prices from our portfolio
on day i. We encode the prices as integers with a fixed,
sufficient number of digits and concatenate them: i.e.,
{14.34, 41.08, . . .} → 001434‖004108‖ Let the bit-
length |Pi| = n. If the prices in the list are, for example,
the 30 stocks of the DJIA, encoding each price with 6
digits will produce a 180 digit or 598 bit string. However
from our simulations in the previous section, we estimate
that there would be only 218 bits of entropy in this 598
bit string, and 192 extractable bits.13 Because the ran-
domness is not concentrated, this semi-random string is
not a suitable for seeding selection algorithms or pseu-
dorandom generators, or as a cryptographic challenge.
In this section, we provide a protocol that, among other
things, takes as input a long, semi-random string of stock
prices, and output a shorter string of near-uniform ran-
dom bits.

The stock market prices can be used in at least one of
two ways: it can be sampled directly by any party requir-
ing a random challenge, or, alternatively, a neutral third
party can regularly sample the source, produce a random
bit-string in some useful form, and publish it for quick
reference by any party requiring an unpredictable chal-
lenge (or seed, common reference string, nonce, etc.).
We call such a publisher a beacon service provider (BSP)
and we will refer to the random values it produces as
seeds. In general, the BSP will be agnostic of what the
seeds are being used for.

A BSP can provide a few benefits: if an election (or
other protocol) has a low risk of fraud, the fact the en-
tity claims a seed is random may be trustworthy enough.
In higher risk protocols, the derivation of the seed can
be independently verified and the BSP is not trusted at
all. Since the BSP is regularly publishing a new seed, it
can update in a recursive fashion, mixing the new clos-
ing prices with the previous seed. This makes the output
dependent on the prices that preceded it. Finally, as an
incentive to provide a beacon service, we can, with care,
also allow the BSP to influence the seed with its own ran-
domness. This also provides a marginal hedge for every-
one else: even if the closing prices are fully manipulated,
the attacker will still have to also collude with the BSP
to fix the seed.

13Even if we did not prepend each price with as many leading zeros,
the entropy would still be less than the length of the string. This is
because the most significant digits in the price is much less likely to
change than the least significant digit (i.e., the one cent digit).

5.1 Definitions

Randomness Extractor. Briefly, Extk is a function:
{0, 1}n × {0, 1}d → {0, 1}m. It takes an n-bit input
of sufficient entropy and a d-bit key k and returns an
m-bit output of high entropy where m < n. Here suffi-
cient entropy means the min-entropy of {0, 1}n is at least
m bits (we will generally require 2m) and high entropy
means that the statistical distance between the distribu-
tion on {0, 1}m and m uniform random bits is ε, where ε
is a negligible function in m. We only consider the case
where d = m. For a formal definition, see [17].

CBC-MAC. Briefly, CBC-MAC is a mode of operation
for a block cipher based on cipher block chaining (CBC)
with an initialization vector of zero, but it returns only the
final block. It is suitable for creating message authenti-
cation codes (MAC). Dodis et al. show that CBC-MAC is
an extractor if the block cipher is an ideal random per-
mutation, the plaintext has 2m bits of min-entropy for an
m-bit output, and the key is uniformly random. For the
full details (including an upper bound on the input size),
see [17].

Pseudorandom Generator. Briefly, G is a function:
{0, 1}m → {0, 1}l(m). It takes anm-bit seed and returns
a polynomially-bounded number of bits l(m) typically
greater than m. The distribution on {0, 1}l(m) is ε-close
to uniform random. For a formal definition, see [6].

Robust Pseudorandom Generators. Barak and
Halevi provide a construction for a robust pseudo-
random generator [6]. A robust PRG uses a standard
PRG, G, as well as maintaining some evolving internal
state si that can be referenced during operation. G
is cryptographically secure: the internal state cannot
be inferred from the output by an adversary bound to
probabilistic polynomial time (PPT). The construction
separates the task of updating the state from the task of
generating pseudorandom bits. We only reference the
former function: refresh.

refresh : {0, 1}m × {0, 1}n → {0, 1}m

si ← G(si−1 ⊕ Extk(Pi)).

This function is of interest because it could be used
for updating the seeds of a beacon service, where the
seed is substituted for the state. A robust PRG affords
a number of functions to an adversary. Of interest,
badRefresh lets the adversary refresh with a chosen Pi,
and setState allows the adversary to learn si and re-
place it with a chosen si+1. In the face of these attacks,
a robust PRG provides three properties: forward secrecy

11

(not needed for a beacon service since past seeds are pub-
lic), break-in recovery, and resilience. Briefly, break-in
recovery means that if an adversary learns si for round
i, si+1 is still unpredictable if refresh is run with a
sufficiently random Pi+1. Resilience means that if an
adversary controls Pi+1 but does not know si, si+1 is
unpredictable.

Bilinear Groups. Let G and GT be cyclic groups of
order q, where q is a large prime. Let e : G×G→ GT be
a bilinear, non-degenerate, and efficient mapping. That
is, ∀g1, g2 ∈ G and ∀a1, a2 ∈ Zq: e(ga1

1 , ga2
2) =

e(g1, g2)a1·a2 where e is computable in polynomial time
and e(g, g) generates GT for some g ∈ G. Finally, as-
sume the q-decisional bilinear Diffie-Hellman inversion
assumption holds for the group (definition omitted for
brevity – see [9]).

Verifiable Unpredictable Function. Briefly, a VUF is
a tuple of four functions. GenK returns secret key sk
and public key pk. Evalsk(x) takes input x and re-
turns a unique and unpredictable y (we omit defining
the domain and range, as they vary by construction).
Proofsk(x, y) returns proof πx,y that y is the output on
x. Verifypk(x, y, πx,y) returns 1 iff proof is correct.
A VUF is a weaker primitive than a verifiable random
function (VRF). Given x, a VUF guarantees y cannot be
guessed with non-negligible advantage, while a VRF of-
fers the stronger guarantee that y cannot be distinguished
from a random element with non-negligible probability.
A VUF is sufficient for us because we know the entropy
in y and will use an extractor to convert it into the re-
quired form. For a formal definition of both, see [18].

Dodis-Yampolskiy VUF. Dodis and Yampolskiy pro-
pose the following VUF, defined over a bilinear group:
{G,GT , g ∈ G, q} [18]. GenK publishes the group,
randomly generates secret key sk ←r Z∗q and pub-
lishes public key pk = gsk. Evalsk(x) takes x ∈ Z∗q
and returns y, which in practice is a point on an ellip-
tic curve. Evalsk(x) is defined as y ← g

1
x+sk . The

proof is embedded in y; Proofsk(x, y) simply returns
{x, y}. Verifypk(x, y, πx,y) is defined as e(pk·gx, y) ?=
e(g, g).

5.2 Security Properties
The central function of our BSP protocol updates the
seed at interval i with new randomness Pi. We define
it with the recurrence: si ← Update(si−1, si−2,Pi),
where si is the seed at interval i and si−1 and si−2 are
the two preceding seeds. An update function does not
need to use two previous seeds—it could be more or less.

The seeds are akin to the internal state of a robust PRG,
except that they are made public at each interval. We
assume the BSP has a secret key. We have several prop-
erties we want from our protocol.

• Verifiable. A polynomial time verifier should be
convinced that Update was computed from Pi,
si−1, and si−2 as specified in the protocol.
• Statistically Random. The statistical difference

between si and a uniform distribution of the same
length should be ε-close.
• Unpredictable. The advantage of a PPT-bound ad-

versary in predicting si without Pi is negligible,
even if the adversary knows si−1, si−2 and the
BSP’s secret key.
• Parisian. The advantage of a PPT-bound adversary

in computing the exact value of Pi needed to out-
put a chosen si is negligible if si is chosen before
knowingPi−1 and si−1 and si−2, even is she knows
the BSP’s secret key.
• Partially Distributed. The advantage of a PPT-

bound adversary in predicting si is negligible if
she knows si−1 and si−2, chooses Pi, but does not
know the BSP’s secret key.

With the exception of the Parisian property, the mo-
tivation for these is hopefully intuitive and not in need
of further explanation. We will illustrate the last prop-
erty with a concrete example. Suppose on the Tuesday
night of a given week, election officials post the results
of an election and the post-election challenges are to be
generated on the Friday of that week after the markets
close. On Thursday night, the adversary knows the seed
from Thursday and let us assume she can fully manipu-
late Friday’s closing prices. Further, assume that she has
a particular seed that she wants produced to ensure some
fraud committed on Tuesday escapes detection. It should
be computationally infeasible for the adversary to deter-
mine the closing prices she needs to set in order to gen-
erate, from the existing seeds, this target seed she wants.
The only way the adversary can produce the desired seed
on Friday is to manipulate the prices every day: Wednes-
day, Thursday, and Friday. We name this “parisian” after
the Parisian options we discussed earlier, which required
a barrier event to occur on multiple days.

5.3 Protocol

Variants. In this section, we define a protocol that can
be used by a BSP to implement the Update function de-
scribed in the previous section. The stock market ran-
domness, Pi, is n bits and contains 2m bits of min-
entropy. We reference two extractors with different out-
put sizes: Extk has an m-bit key and produces an m-bit

12

Variant V
er

ifi
ab

le

U
np

re
di

ct
ab

le

St
at

is
tic

al
ly

R
an

do
m

Pa
ri

si
an

Pa
rt

ia
lly

D
is

tr
ib

ut
ed

O
ut

pu
tL

en
gt

h
(|s

i|)

1. si = H(Pi) x x {0, 1}h
2. si = Extk(Pi) x x x {0, 1}m
3. si = Fowf(si−1 ⊕ Extk(Pi)) x x x x {0, 1}m
4. si = Ext′k′(Evalsk((si−1‖si−2)⊕ Extk(Pi))) x x x x x {0, 1}l

Table 3: A sequence of intermediate protocols, and which properties they achieve, leading to our suggested protocol.
Assuming Pi has 2m bits of min-entropy, the output length is provided. Length h depends on the hash function used,
while m = 2l (e.g., h=160, m=256 and l=128).

output, while Ext′k′ has an l-bit key and l-bit output. We
consider m = 2l.

Table 3 shows some related constructions. Perhaps the
simplest approach is to publish an h-bit hash of the list of
closing prices each day: Variant 1. Before Pi is known,
the hash ofPi will trivially be unknown as well, and once
Pi is known, anyone can verify the output is correct by
recomputing the hash from their source for the closing
prices.

The problem with using a fixed hash function is that it
does not guarantee a statistically random output. Dodis
et al. show that even if a hash function is modelled with
an ideal compression function (and Merkle-Damgaard
chaining), it does not have good extraction properties.
Instead, the hash needs to be taken from a family of hash
functions (i.e., a keyed hash) and even then, one must
pay attention to the padding scheme used to ensure the
final block has sufficient entropy [17]. With the use of
a proper extractor, Variant 2 of the protocol produces a
statistically random output. While extractors are keyed,
the key, k, only needs to be uniformly random. Its value
is not kept secret and the key can be reused.

Variant 2 is not Parisian because it is only function-
ally dependent on the most recent closing prices of the
stocks. Let Fowf denote a one-way function. Variant 3
adds the Parisian property and is essentially the refresh
function of a Barak-Halevi robust PRG. Recall refresh
is defined as: si ← G(si−1 ⊕ Extk(Pi)). G is used as:
{0, 1}m → {0, 1}m (i.e., there is no expansion ofm) and
PRGs are one-way. 14

Variant 4 is our protocol. The main modification is to
replace G(·) with the Evalsk(·) function of a VUF, which
allows the BSP to influence the seed with sk, while main-

14So why is G not a one-way function in the Barak-Halevi model?
The answer is because we are only using one of two functions of-
fered by the robust PRG model—the other function uses the same G
as: {0, 1}m → {0, 1}2m.

taining verifiability. This adds the partially distributed
property. The other variants were verified by recomput-
ing the value. In this case, the BSP produces a correct-
ness proof for Evalsk(·) that is checked. The properties
of the VUF also imply that without knowledge of sk, the
output of Evalsk(·) is unpredictable if the input is un-
known.

VUF Details. A variety of VUFs and VRFs exist. We
use the Dodis-Yampolskiy VUF [18] for its simplicity,
efficiency, and the fact that its proof is non-interactive.15

However since it is based on bilinear pairings, we re-
quire some encoding. Recall the domain of Eval is an
exponent and the range is a point on an elliptic curve.
Let Φ1: {0, 1}m → Z∗q be an encoding function that is
entropy preserving (i.e., injective). When q > 2m, this
encoding is the trivial one. Let Φ2 be a mapping from
an element in GT → {0, 1}m. This encoding (or ex-
traction) is more difficult, and it is specific to the type
of elliptic curve used. For a random point on an ordi-
nary curve defined over F22l , an l-bit string can be ex-
tracted [23]. For a supersingular curve (which offer fast
pairing operations), we are not aware of any specific ex-
tractor. Instead, we simply concatenate the coordinates
together and use a randomness extractor, Ext′k′ , which
produces an l-bit output.

Extractor Details. In deciding on how to implement
Extk, we consider two options.

• We could use an approach that is specific to the dis-
tribution we are drawing from: closing prices (for
the first extraction). For example, we could con-
sider a daily relative increase in price as heads and

15Note that while Dodis-Yampolsky restrict the domain of their VUF,
Camenisch et al. find it can admit the full range under a stronger secu-
rity assumption (in the generic group model) than q-BDHI [14].

13

a decrease as tails. Due to the drift term, there is a
slightly biased toward heads which can be corrected
for with a Von Neumann extractor—see Footnote
1. However this approach produces less than a bit
of entropy per closing price (and therefore does not
guarantee even one bit of entropy each day the mar-
ket closes) and since stocks are correlated, it is not
clear how to use more than one stock.
• Dodis et al. investigate using a block cipher in

CBC-MAC mode—the result quoted above. This
construction has less “fine-print” than some of the
alternatives they examine. If the plaintext has 2m
bits of min-entropy and isL blocks long, it produces
an m-bit output with a statistical distance, from
a uniformly random m-bits, of O(L 2−m/2). A
side-benefit is that it also has an “avalanche-effect”
where a difference in a single bit of the input causes
a random-looking difference in the output. We use
this approach.

Key Derivation. The CBC-MAC extractor, or any
other non-deterministic extractor, does have one issue
however: how it is keyed. Extractor keys do not need to
be secret (in fact, for verifiability, they cannot be), how-
ever they must be uniformly random. Again, we consid-
ered a few options.

• The BSP could choose a uniformly random key at
the beginning of the protocol and use it throughout.
However this is providing adversarial control over
the key, and we cannot cite any strong results on
what an adversary could do with this control.
• Assuming we can bootstrap the process, we will be

generating good quality randomness at every itera-
tion and so we could use the values of the previous
seeds to refresh the key to the extractor. The results
from the extraction literature assume a uniform ran-
dom key and do not indicate if an ε-close random
key is sufficient (or could be compensated for by
increasing the entropy of the input).
• We could use the historic prices of a single stock

and a Von Neumann extractor as described in the
first bullet point of the preceding list. While we re-
jected this approach for the extractor itself, it works
well for generating a key. Since there are no unpre-
dictable or secrecy requirements on the key, we can
use past prices instead of future prices. This gives
us immediate access to enough bits to generate the
two required extraction keys (k and k′). In addi-
tion, the key can be continually updated by shifting
in new bits as time goes by. We give full details
of this key derivation procedure in Appendix A.1 in
the full version of the paper.16

16Available at: http://eprint.iacr.org/2010/361

Algorithm 2: Update Beacon

begin1

xi = (si−1‖si−2)⊕ Rijn256-CBC-MACki
(Pi)2

yi = g
1

xi+sk3

si = AES128-CBC-MACk′i(yi)4

end5

Publish: {yi, si}6

Algorithm 3: Verify Beacon

begin1

xi = (si−1‖si−2)⊕ Rinj256-CBC-MACki
(Pi)2

e(pk · gxi , yi)
?= e(g, g)3

si
?= AES128-CBC-MACk′i(yi)4

end5

Protocol. The BSP publishes pairing-friendly
{G,GT , g ∈ G, q}. The BSP chooses sk randomly from
Z∗q and publishes pk = gsk. The BSP generates the
current extraction keys ki and k′i. The initial states s−1

and s0 are set to zero. On day i ≥ 1, BSP takes the
closing stock prices, Pi, and executes Algorithm 2. To
verify that si is a proper update to si−1, a verifier with
{pk, ki, k′i,Pi, yi, si, si−1, si−2} executes Algorithm 3.
Note that the verifier does not need to verify that the
seeds from si−1 back in time to s1 were themselves
correctly formed. To be assured that si is a random
beacon, it is sufficient to check it is correctly formed
from the arbitrary values claimed to be si−1 and si−2.
This is because Pi fully refreshes the randomness of si.

Parameter Sizes. For the extractors, we need a block
cipher and AES is the default candidate. However the
choice of AES locks us into only using an extractor with
128 bit outputs. If we use Rijndael, we can expand that
choice to 128, 192, or 256 bit outputs. Our protocol re-
quires two extractors and with each extraction, we lose
half of the bits of entropy in the input. Therefore we
start with 512 bits of min-entropy inPi and use Rijndael-
25617 to generate a value xi with (ε-close to) 256 bits of
min-entropy. These 256 bits are preserved in yi and then
a second extraction with AES-128 produces a value si
with (ε-close to) 128 bits of min-entropy.

This approach depends on Pi having at least 512 bits
of min-entropy. We estimated the DJIA only has 192
bits. However we have also shown that adding additional
stocks increases the total min-entropy. We would like

17Rijndael with a 256 bit block size and a 256 bit key.

14

http://eprint.iacr.org/2010/361

the portfolio to be easy to construct, and ideally iconic—
for this reason, we recommend using the S&P 500. By
extrapolating our results, the daily closing prices of these
500 stocks provides 512 bits of min-entropy with a large
safety margin.18 This will allow us to produce a fresh
128-bit random number every market day.

This approach also assumes we can encode the 256-bit
number xi into the subgroup of a pairing-friendly curve.
Common curve sizes, however, work in subgroups of
160-bits and so this would require a custom implementa-
tion. If alternative sizes for the extractors are preferable,
one could use a variable-length block cipher [4] instead
of Rijndael/AES, which allows extractors of any size.19

5.4 Security Analysis (Abstract)

Due to space restrictions, we omit the analysis of secu-
rity for our protocol; however, it is included in Appendix
A.2-7 of the full version of this paper20. In the analy-
sis, we prove that our protocol has the five properties we
have specified. We note that some of the properties we
want to prove are subsumed by the properties of a Barak-
Halevi robust PRG. This includes directly: statistically
random and unpredictable (unpredictable is equivalent
to their notion of break-in recovery). Parisian is also im-
plied but not explicit. However, we prove each of these
independently for our variant, plus demonstrating verifi-
ability and the partially distributed property.

6 Concluding Remarks

In this paper, we have shown that the closing prices for
common stocks contain sufficient min-entropy for gen-
erating random challenges for use in elections or other
cryptographic applications. This result, in combination
with the ease with which stock prices can be verified,
makes financial data an attractive source of randomness
for cryptographic voting systems unable to use the Fiat-
Shamir heuristic, and possibly for precinct selection in
standard electronic voting. In addition to the entropy es-
timates, we have provided a provably secure protocol for
implementing a beacon service. It is our hope that such a
beacon service, whether using our protocol or a variant,
becomes a reality.

18This is not meant to suggest that the 30 stocks used by Scantegrity
are insufficient. For the number of units to be audited in this election, a
seed of 16 bits expanded with a PRNG provides good statistical proper-
ties (cf. [12,36]). As shown, this is nearly achieved by CVX and XOM
alone.

19Although the security of these ciphers has not been examined
as closely as AES, neither has been examined in any detail for good
extraction properties.

20Available at: http://eprint.iacr.org/2010/361

Future Work. We list a few items for future work.
First, estimating joint entropy between correlated stocks
becomes infeasible as the number of stocks grows.
Progress on making this estimation more efficient would
be welcome. Second, some results concerning extractors
built with standard cryptographic primitives would be
useful: specific bounds (instead of asymptotic bounds),
analysis of using inputs where the min-entropy is less
than twice the min-entropy of the output, and analysis
of extraction with a key that is only statistically-close to
uniform random, instead of being exactly uniform ran-
dom. A third item for future work would be alternative
VUFs, in particular a scheme that works over the inte-
gers, to reduce the complexities of mapping from a finite-
field over elliptic curves back to the integers. Ideally, if
a VUF mapped m-bit integers to m-bit integers, then the
second extractor would not be needed at all.

Acknowledgements. The authors thank the Punchscan
and Scantegrity teams for many discussions on the use
of financial data as beacons. In particular, we acknowl-
edge Ron Rivest for the idea of using the DJIA as an
entropy pool and for the protocol used in the Scantegrity
II election in Takoma Park. The issue of inconsistent re-
porting of stock volumes was raised by Ben Adida and
James Heather. We thank Aleks Essex and the anony-
mous reviewers for their input on a draft of this paper.
The authors acknowledge the support of this research by
the Natural Sciences and Engineering Research Council
of Canada (NSERC)—the first author through a Canada
Graduate Scholarship and the second through a Discov-
ery Grant.

References
[1] B. Adida. Helios: web-based open-audit voting. USENIX Secu-

rity Symposium 2008.

[2] B. Adida, O. de Marneffe, O. Pereira, and J.J. Quisquater. Elec-
tion a university president using open-audit voting. EVT 2009.

[3] R.K. Aggarwal and G. Wu. Stock market manipulation—theory
and evidence. Journal of Business, 79(4) 2003.

[4] R.J. Anderson and E. Biham. Two Practical and Provably Secure
Block Ciphers: BEARS and LION. FSE 1996.

[5] L. Babai. Trading group theory for randomness. STOC 1985.

[6] B. Barak and S. Halevi. A model and architecture for pseudo-
random generation and applications to /dev/random. CCS
2005.

[7] F. Black and M. Scholes. The pricing of options and corporate
liabilities. Journal of Political Economy, 81(3), 1973.

[8] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-
knowledge and its applications. STOC 1988.

[9] D. Boneh and M. Franklin. Identity-based encryption from the
Weil pairing. CRYPTO 2005.

[10] R. Canetti, R. Pass and a. shelat. Cryptography from Sunspots:
How to Use an Imperfect Reference String. FOCS 2007.

15

http://eprint.iacr.org/2010/361

[11] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L.
Rivest, P. Y. A. Ryan, E. Shen, and A. T. Sherman. Scantegrity
II: end-to-end verifiability for optical scan election systems using
invisible ink confirmation codes. EVT 2008.

[12] J. Clark, A. Essex, and C. Adams. Secure and observable auditing
of electronic voting systems using stock indices. IEEE CCECE
2007.

[13] J. Calandrino, J.A. Halderman, and E.W. Felten. In defense of
pseudorandom sample selection. EVT 2008.

[14] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya,
and M. Meyerovich. How to win the clone wars: efficient periodic
n-times anonymous authentication. CCS 2006.

[15] M. Chesney, M. Jeanblanc-Picque, and M. Yor. Brownian excur-
sions and Parisian barrier options. Advances in Applied Probabil-
ity, 29, 1997.

[16] A. Cordero, D. Wagner, and D. Dill. The role of dice in election
audits. WOTE 2006.

[17] Y. Dodis, R. Gennaro, J. Hastad, H. Krawczyk, and T. Rabin.
Randomness extraction and key derivation using the CBC, Cas-
cade and HMAC modes. CRYPTO 2004.

[18] Y. Dodis and A. Yampolskiy. A verifiable random function with
short proofs and keys. PKC 2005.

[19] D. Eastlake. Publicly Verifiable Nomcom Random Selection.
RFC 2777, IETF, 2000. http://www.ietf.org/rfc/
rfc2777.txt

[20] D. Eastlake. Publicly Verifiable Nominations Committee (Nom-
Com) Random Selection. RFC 3797, IETF, 2004. http://
www.ietf.org/rfc/rfc3797.txt

[21] A. Essex, J. Clark, R. T. Carback, and S. Popoveniuc. Punchscan
in practice: an E2E election case study. WOTE 2007.

[22] S. Even, O. Goldreich, and A. Lempel. A randomized protocol
for signing contracts. CACM, 28(6), 1985.

[23] R.R. Farashahi, R. Pellikaan, and A. Sidorenko. Extractors for
binary elliptic curves. Designs, Codes, and Cryptography, 49,
2008.

[24] A. Fiat, and A. Shamir. How to prove yourself: practical solutions
to identification and signature problems. CRYPTO 1986.

[25] S. Goldwasser and Y. Kalai. On the (in)security of the Fiat-
Shamir paradigm. FOCS 2003.

[26] S. Goldwasser and M. Sipser. Private coins versus public coins in
interactive proof systems. STOC 1986.

[27] J. Groth and A. Sahai. Efficient non-interactive proof systems for
bilinear groups. EUROCRYPT 2008.

[28] A. Halderman and B. Waters. Harvesting verifiable challenges
from oblivious online sources. CCS 2007.

[29] J.L. Hall. On improving the uniformity of randomness with
Alameda County’s random selection process. 2008.

[30] D. Jefferson, E. Ginnold, K. Midstokke, K. Alexander, P. Stark,
and A. Lehmkuhl (State of California’s Post-Election Audit Stan-
dards Working Group). Evaluation of Audit Sampling Models
and Options for Strengthening Californias Manual Count. Report,
2007.

[31] A. Juels, M Jakobsson, E. Shriver, and B. Hillyer. How to Turn
Loaded Dice into Fair Coins. IEEE Transactions on Information
Theory, 46(3), 2000.

[32] R. Merton. Theory of rational option pricing. Journal of Eco-
nomics and Management Sciences, 4(1), 1973.

[33] G. Miller. Note on the bias of information estimates. “Information
Theory in Psychology II-B.” Free Press, 1955.

[34] L. Paninski. Estimation of entropy and mutual information. Neu-
ral Computation, 15, 2003.

[35] M. Rabin. Transaction protection by beacons. Journal of Com-
puter and System Sciences, 27(2), 1983.

[36] E. Rescorla. On the security of election audits with low entropy
randomness. EVT 2009.

[37] M. Schroder. Brownian excursions and Parisian barrier options:
a note. Advances in Applied Probability, 40(4), 2003.

[38] R.U. Seydel. “Tools for computational finance.” Springer, 4th ed,
2009.

[39] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New
client puzzle outsourcing techniques for DOS resistance. CCS
2004.

[40] S. Wolfram. “A New Kind of Science.” Wolfram Media, 1st ed,
2001.

16

http://www.ietf.org/rfc/rfc2777.txt
http://www.ietf.org/rfc/rfc2777.txt
http://www.ietf.org/rfc/rfc3797.txt
http://www.ietf.org/rfc/rfc3797.txt

A Security Analysis

Let n, m, and l be positive integers such that n ≥ 2m ≥
4l. Recall the main operation of our protocol:

si = Ext′k′(Evalsk((si−1‖si−2)⊕ Extk(Pi))). (11)

It is used for updating seeds si ∈ {0, 1}l. The stock
market randomness, Pi, is n bits (broken into L blocks
of m bits). The operation uses two extractors with dif-
ferent output sizes: Ext has an m-bit output and uses an
extraction key k ∈ {0, 1}m, while Ext′ has an l-bit out-
put and is keyed with k′ ∈ {0, 1}l. The BSP’s secret
key sk ∈ Z∗q , where q is a large prime of at least m bits.
For reference, we might consider l = 128,m = 256, and
q as a prime of at least 256 bits. In this section, we show
our protocol has the following properties:

• Verifiable. A polynomial time verifier should be
convinced that Update was computed from Pi,
si−1, and si−2 as specified in the protocol.
• Statistically Random. The statistical difference

between si and a uniform distribution of the same
length should be ε-close.
• Unpredictable. The advantage of a PPT-bound ad-

versary in predicting si without Pi is negligible,
even if the adversary knows the secret key, si−1 and
si−2.
• Parisian. The advantage of a PPT-bound adversary

in computing the exact value of Pi needed to out-
put a chosen si is negligible if si is chosen before
knowingPi−1 and si−1 and si−2, even is she knows
the secret key.
• Partially Distributed. The advantage of a PPT-

bound adversary in predicting si is negligible if
she knows si−1 and si−2, chooses Pi, but does not
know the BSP’s secret key.

A.1 Key Derivation
Before showing that our protocol meets the described
properties, we describe a procedure for deriving two ex-
tractor keys: k ∈ {0, 1}m and k′ ∈ {0, 1}l. For sim-
plicity, consider this the task of generating a single key
of size κ = m+ l and then partitioning it into two keys.
Recall that unlike cryptographic keys, extraction “keys”
do not need to be unpredictable or kept secret. The key is
an index to each extractor in a family of extractors. The
key does need to be selected with uniform randomness to
ensure there is no bias in choosing an extractor from the
family.

To generate a uniformly random key of length κ, we
will use historic prices of a single stock. The choice of
stock is arbitrary but for consistency, we can use the S&P

500 aggregate index, which produces a single represen-
tative price for the 500 stocks contained in the portfolio.
Instead of using the prices themselves, we will use the
price differences between two consecutive days begin-
ning at some agreed upon date. This will give us a list
of price movements: up, down, or (rarely) no change.
From this list, we apply the Von Neumann extractor for
a biased coin. We consider up to be heads, down to be
tails, and in cases of no change, an output bit will not be
generated.

To do this, we partition the list into pairs of val-
ues. (The importance of agreeing on a beginning date
is only to ensure this partition has the same alignment
when a verifier duplicates the procedure.) If the pair
is {down,up}, we output a 0. If the pair is {up,down},
we output a 1. If the output is anything else (i.e.,
{down,down}, {up,up}, or involves a no change), we
output no value.

Of the Black-Scholes assumptions, this extraction is
only assuming that for all (non-overlapping) intervals
in time, the price difference is statistically independent
from all other such intervals—i.e., it is a Markov process.
It does not matter if there is drift or diffusion, or even if
these factors change in magnitude over time. In the same
way that the Von Neumann extractor works even if the
coin is biased, drift affects the result in the same way:
the more bias, the less the number of random bits that
can be extracted on average.

For our update function with the reference parameters,
κ = 256 + 128 = 384 bits. If we start our process on
January 1, 2004, the S&P 500 generates over 420 bits by
March 23, 2010. We use these bits, ordered from oldest
to newest to construct a bitstring from most-significant
bits to least-significant bits respectively. If the bitstring
is longer than the required key, the rightmost bits are
used. Each day, the BSP checks the latest price move-
ment. If a new bit is generated, it can be shifted into the
least-significant bit of the key and the most-significant
is dropped. Although extraction keys do not need to be
refreshed, this can help verifiers regenerate the key with-
out going as deep into historic prices. Since the keys are
evolving, we herein denote their value at time i as ki and
k′i.

A.2 Verifiable

We have already shown, from Algorithm 3, that the pro-
tocol is verifiable. It is easy to see that aside from
Evalsk, the protocol is completely deterministic with
knowledge of si−1, si−2, and Pi. Dodis and Yampol-
skiy show that for the specific Evalsk we implement, one
can verify that known output is the result of the function
being evaluated on some known input [18]. This verifi-
cation has already been summarized in Section 5.1.

17

A.3 Statistically Random
We consider whether the output is statistically random.
This is not a security property: an output can have a ran-
dom distribution while specific outputs are predictable
to an adversary. In our case, we want the output to be
high entropy in both a statistical sense, and from a de-
fined view by the adversary of the protocol. However
in certain circumstances, for example common reference
strings or sunspots, unpredictability is not necessary and
so we treat the issues separately. Another example that
we have encountered where randomness is needed, but
not unpredictability, is an extractor key.

We say an update function is statistically random if
the statistical distance between the produced seed and a
uniformly random seed is negligible in some security pa-
rameter.

Let D1 and D2 be discrete distributions. Let Z be the
set of events in the distribution, and PrD(z) be the prob-
ability that event z ∈ Z occurs under distribution D. Re-
call [17] that the statistical distance between D1 and D2

is:

SD(D1,D2) =
1
2

∑
z∈Z
|PrD1(z)− PrD2(z)|.

When D2 is a uniform distribution over Z, D2 =
U|Z|, then the statistical distance is:

SD(D1,D2) ≤ 1
2

√
|Z| · 2H∞(D1) − 1. (12)

We first apply a result from Dodis et al. concerning
CBC-MAC mode extractors [17]. Recall that Extki

(the
inner extractor in our update function) denotes the CBC-
MAC mode over a random permutation. Extki takes an
input of arbitrary length and m-bit uniform random key,
and produces an m-bit output. Let Pi denote an n-bit
representation of stock prices (over L blocks of length
m) and Pn be the distribution of possible Pi values over
{0, 1}n. Let Um be a random variable with uniform dis-
tribution over {0, 1}m. Provided Pn has min-entropy
H∞(Pn) > 2m and its length, in blocks, is restricted by
L < 2m/4, the statistical distance between Extki

(Pn)
and Um is:

SD(Extki
(Pn),Um) ≤ O(L · 2−

√
m) = negl(m).

Reconsider this step with the reference parameters.
We have conjectured that the S&P 500 has at least 512
bits of min-entropy, which allows m = 256. The largest
price in the last decade of the S&P was reached by
GOOG at $741.79. As integer 74 179, it (barely) requires
17 bits. If we represent 500 prices at 17 bits each, Pi will

require L = 34 blocks and L < 2256/4. Therefore, the
conditions for the stated result are met and the statistical
distance is negligible in m.

Let Xm be the distribution over the range of
(si−1‖si−2)⊕ Extki

(Pn) with domain distribution Pn.
The entropy in Extki

(Pn) is used to mask (si−1‖si−2),
as in a one-time pad, and therefore si−1 and si−2 can
be considered fixed constants. Thus the min-entropy of
Extki

(Pn) is preserved in Xm and

SD(Xm, Extki
(Pn)) = 0.

We now recall a result from Dodis and Yampolskiy
concerning their verifiable unpredictable function, yi =
Evalsk(xi) = g

1
xi+sk and Verifypk(xi, yi, πi) : e(pk ·

gxi , yi)
?= e(g, g) [18]. A VUF demonstrates uniqueness

if Verifypk(x, y1, π1) and Verifypk(x, y2, π2) cannot
hold for the same x, same pk (and thus same sk), and
y1 6= y2. For this particular VUF, where π is encapsu-
lated in y, uniqueness implies x → Evalsk(x) is an
injective function.

Injective functions are entropy-preserving: thus yi
preserves the entropy of xi. Let Y be the distribution
over the range of Evalsk(Xm) with domain distribution
Xm. Y will consist of points on some elliptic curve, so
we do not denote its length. Because Evalsk is injective
for a fixed sk, the min-entropy of Y will be equivalent
to H∞(Xm). Thus:

SD(Y, Evalsk(Xm)) = 0.

Let Um̂ be a uniform distribution over the support
of Evalsk(Um). We use m̂ for preciseness because
while distribution is define over a set of the same size as
{0, 1}m, the symbols are not m-bit bitstrings but rather
coordinates on an elliptic curve. Putting the above steps
together, we have that:

SD(Evalsk((si−1‖si−2)⊕ Extki(Pn)),Um̂) = negl(m).

The reason for this analysis is to establish the min-
entropy of Y in preparation for the outer extraction
Ext′k′i

.21 For the inner extraction we just analyzed, we
required the min-entropy to be twice the output length.
For the outer extractor, Ext′k′i

, the output is l where
m = 2l. Therefore to analyze it in the same way, the
input should have at least m bits. However since the sta-
tistical distance between Y and Um̂ is not exactly 0, the
min-entropy of Y is less than m bits.

21Note we can relate statistical distance and min-entropy through
Equation 12 or the more specific bounds we cite from [17].

18

Let δ = |H∞(Y) − H∞(Um̂)|. Let Ul be a random
variable with uniform distribution over {0, 1}l. The sta-
tistical distance can be determined (using bounds from
Dodis et al. [17] when the number of blocks in the input
is L′ < 2k/4) as:

SD(Ext′k′i(Y),Ul)

≤
√

2l2−H∞(Y) +O(4L′22−l + L′62−2l)

≤ O
(√

2−l(L′2 + 2−δ l)
)

= negl(l). (13)

Note that when δ = 0, the previous bound of
O(L′ · 2−

√
l) holds. With the reference parameters, as-

sume that Y is a pair of coordinates on an elliptic curve
defined over a finite field. We assumed the order of the
subgroup q was a prime of at least 256 bits and now let
us assume the base field size is, say, 1024 bits. With a Y
of 2048 bits, we can extract l = 128 bits. The input will
be L′ = 16 blocks satisfying L′ < 2128/4.

We say the update function in Equation 11 is statisti-
cally random because as shown in Equation 13, the sta-
tistical distance between the produced seed and a uni-
formly random seed is negligible in l.

A.4 Unpredictable

Assume an adversary knows sk. We say an update func-
tion is unpredictable if a PPT-bounded adversary cannot
distinguish between the following two distributions:

si = Ext′k′i(Evalsk((si−1‖si−2)⊕ Extki
(Pn)))

si = Ul

We show this in the context of the following security
game: an oracle returns to the adversary a value of si
drawn from one of the two distributions with equal prob-
ability. The adversary’s goal is to guess which was sent.
We will show the adversary’s advantage at winning this
game over a random guess is negligible through a series
of related games.

Recall Um is a random variable with uniform distri-
bution over {0, 1}m. For any Pi selected from the distri-
bution of closing prices, a PPT-bounded adversary (in m
and l) cannot distinguish, with non-negligible advantage,
between the following two statements:

si = Ext′k′i(Evalsk((si−1‖si−2)⊕ Extki(Pi)))
si = Ext′k′i(Evalsk((si−1‖si−2)⊕Um)).

This is because the statistical distance, as shown in the
previous section, is negligible in m and the adversary
only has polynomial capabilities relative to m. Since
(Evalsk((si−1‖si−2)⊕Um) acts as a one-time pad, any
adversary (bounded or not), cannot distinguish:

si = Ext′k′i(Evalsk((si−1‖si−2)⊕Um))

si = Ext′k′i(Evalsk(Um)).

We showed in the previous section that yi =
Evalsk(xi) is injective. Thus, any adversary (bounded
or not), cannot distinguish:

si = Ext′k′i(Evalsk(Um))

si = Ext′k′i(Um̂).

Recall that Ul is a random variable with uniform dis-
tribution over {0, 1}l. A PPT-bounded adversary cannot
distinguish, with non-negligible advantage, between the
following two statements:

si = Ext′k′i(Um̂)
si = Ul.

This is because the statistical distance, as shown in the
previous section, is negligible in l. Putting this chain of
modifications together, an adversary’s advantage in dis-
tinguishing the following is negligible:

si = Ext′k′i(Evalsk(Evalsk((si−1‖si−2)⊕ Extki
(Pi)))

si = Ul.

More precisely, it is: ε = negl(m) + 0 + 0 + negl(l),
where m = 2l. Therefore, the update function in Equa-
tion 11 is unpredictable with respect to l.

A.5 Parisian
Assume an adversary knows sk. We say an update func-
tion is Parisian if an adversary, given a target value for
seed si, cannot compute the value of a valid Pi such that
the update function produces si.

We show this through a two-step reduction: reductions
from the hardness of finding xi in the first equation to the
hardness of finding xi in the second to the hardness of
finding Pi in the third.

yi = gxi

yi = Evalsk(xi)
si = Ext′k′i(Evalsk((si−1‖si−2)⊕ Extki

(Pi)))

19

Toward a contradiction, assume there exists an adver-
sary A1 who can efficiently find xi, given g, sk, and
yi = Evalsk(xi) = g

1
sk+xi for some group Gq where

the discrete logarithm problem is hard. In other words,
there is an oracle for the second line in our reduction
steps. Such an adversary could find an arbitrary discrete
logarithm in Gq , say logβ(α), by setting y = β, g = α,
choosing a random sk and finding xi. It then returns
logβ(α) = xi + sk. Therefore A1 can only exist if there
is an efficient adversary that can solve arbitrary discrete
logarithms in Gq .

Now assume there exists an efficient adversary A2

who can efficiently find Pi, given sk, si−1, ki, k′i, and
si = Ext′k′i

(Evalsk((si−1‖si−2)⊕ Extki
(Pi)))—an or-

acle for line 3. Such an adversary could solve the pre-
vious problem of finding arbitrary pre-images to Eval.
Say for example, the adversary is challenged to find
δ = Evalsk(γ). It can choose a random sk, ki, k′i,
and si−1. It sets si = Ext′k′i

(δ), finds Pi, and returns
γ = si−1 ⊕ Extki

(Pi). Therefore A2 only exists if A1

exists, and A1 only exists if the discrete logarithm prob-
lem is easy in Gq . Assuming, as is standard, that the
discrete logarithm problem is hard in Gq , A2 does not
exist and Equation 11 is parisian.

A.6 Partially Distributed
For the final property, assume an adversary does not
know sk. We say an update function is partially dis-
tributed if the value of si cannot be computed by the ad-
versary given all other inputs.

We show this property by showing that si is not com-
putable even if the adversary knows every input to,

si = Ext′k′i(Evalsk((si−1‖si−2)⊕ Extki
(Pi))).

Computing si requires computing Evalsk on a known
input, without knowledge of sk. Dodis and Yampol-
sky give a reduction to a bilinear decisional problem, q-
DDHI, for the difficulty of this task (which they call un-
predictability) for their their VUF [18], but only when the
input is superlogirithmic. An alternative approach for the
same VUF is undertaken by Camenisch et al. [14]. They
analyze the VUF in the generic group model and find
with this stronger assumption, it can admit full length
inputs. For our beacon protocol, we require full length
inputs and thus rely on this weaker result.

A.7 Assumptions
We now recap the various security assumptions we have
made.

• Standard Assumptions. The discrete logarithm
problem is hard in Gq .
• Ideal PRP. We assume AES is a pseudo-random

permutation.
• Generic Group. We assume that analysis in the

generic group model holds for our bilinear group.

20

	Introductory Remarks
	Related Work
	Public Randomness in Cryptography
	Public Randomness in Elections
	Cryptographic Elections
	Stock Market for Public Randomness

	Model and Assumptions
	Terminology
	Black-Scholes Model
	Market Manipulation
	Official Closing Price

	Entropy Estimates
	Historical Drift and Diffusion
	Monte-Carlo Simulation
	Entropy Estimation
	Experimental Results
	Portfolio Entropy

	Beacon Implementation
	Definitions
	Security Properties
	Protocol
	Security Analysis (Abstract)

	Concluding Remarks
	Security Analysis
	Key Derivation
	Verifiable
	Statistically Random
	Unpredictable
	Parisian
	Partially Distributed
	Assumptions

