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Abstract. This paper considers coercion contracts in voting systems
with end-to-end (E2E) verifiability. Contracts are a set of instructions
that an adversary can dictate to a voter, either through duress or by
offering payment, that increase the probability of a compliant voter con-
structing a vote for the adversary’s preferred candidate. Using a repre-
sentative E2E system, we place the attacks in game-theoretic terms and
study the effectiveness of three proposed contracts from the literature.
We offer a definition of optimality for contracts, provide an algorithm
for generating optimal contracts, and show that as the number of candi-
dates increases, the adversary’s advantage through the use of contracts
decreases. We also consider the use of contracts in a heterogeneous pop-
ulation of voters and for financially constrained adversaries.

This version contains a few corrections to the version appearing in Lec-
ture Notes in Computer Science 5767.

1 Introduction

End-to-end verifiable voting systems (E2E systems) allow voters to indepen-
dently verify the correctness of the final tally, without needing to trust the
chain-of-custody over the ballots after the election in paper voting settings, nor
any software or hardware used for vote capture and tallying in electronic and re-
mote voting settings. E2E systems often use cryptographic primitives to achieve
these properties while maintaining the secrecy of every cast ballot. A sample of
recently proposed E2E systems include VoteHere [20], “Votegrity” [12], Prêt à
Voter [14], “Benaloh-06” [7], Scratch and Vote [3], Punchscan [15, 23], ThreeBal-
lot [24], Scantegrity [10, 11], Civitas [19], VoteBox [25] and Helios [1]. A common
element of these systems is the production of some kind of obfuscation of each
vote, which voters can retain, digitally or physically, as a privacy-preserving re-
ceipt of their vote. Since the receipt does not reveal which candidate the voter
selected, it ostensibly cannot be used effectively in a scheme to buy votes or
coerce voters into voting for a particular candidate. However this is not the case:
even if votes are correctly obfuscated, undue influence can still be accomplished



by paying or forcing voters to follow certain procedures in the construction of
their receipts, such that the receipts become probabilistically biased toward a
chosen candidate. We call these procedures, and consequences for not following
them, a contract. In this paper, we argue that contracts are persistent enough in
E2E systems to warrant further study and, in response, we conduct a detailed
analysis in a representative E2E system—Punchscan.

Our contributions can be summarized as

• a new analysis of the effectiveness of three existing attacks [9, 17, 18] using
coercion contracts in Punchscan with two candidates,

• a definition of optimality for contracts and a linear-time algorithm for gen-
erating optimal contracts,

• an analysis of multiple-candidate contracts showing that their effectiveness
decreases with the number of candidates,

• an analysis of contracts in the setting where some voters have intentions
other than accepting the highest payment available to them and hide their
real intentions from the adversary, and

• an analysis of contracts in the setting where the adversary is financially con-
strained showing that the adversary must value the vote by, approximately,
an order of magnitude more than the voter selling the vote.

2 Preliminaries

2.1 End-to-end Verifiability

Voting systems that offer end-to-end verifiability often use a variety of crypto-
graphic techniques to simultaneously achieve ballot secrecy and tally correctness.
One common construction includes, abstractly, these three critical steps:

i. The voter produces and retains an obfuscation of her vote, such that given
only the obfuscated vote, it is not possible to determine the vote.

ii. Obfuscated votes are collected by the election authority, published publicly,
and voters check that the obfuscation of their vote is included and correct
in this collection.

iii. Obfuscated votes are collectively deobfuscated to produce a tally in a way
that is verifiably correct and does not reveal the link between any obfuscated
and deobfuscated votes.

While there is little room for variation within (ii), a variety of approaches to
(i) and (iii) have been presented in the literature. The integrity of (i) is some-
times referred to as ballot casting assurance [2] or voter initiated auditing [5],
while privacy is called coercion resistance [16] or receipt freeness [8]. The domi-
nant mechanism for achieving obfuscation in (i) is encryption, but more recent
literature includes use of permutations, code substitutions, information splitting,
and vote swapping. When the obfuscation technique is encryption, the deobfus-
cation in (iii) is typically achieved through a mix network [13, 22] or additive
homomorphic encryption [6].



2.2 Undue Influence

The subject of this paper pertains to the privacy property in (i). We are inter-
ested in cases where given only an obfuscated vote, the voter’s selection remains
hidden; yet if certain decisions in the construction and verification of the ob-
fuscated vote are dictated to the voter by an adversary, the voter’s compliance
results in a non-negligible probability that the voter selected the adversary’s
preferred candidate.1 We call such a set of instructions a contract and this class
of attack contract-based attacks.

Contract-based attacks have been proposed for a variety of E2E systems. In
the experience of the first authors, they have also proven non-trivial to avoid
in the design of Scantegrity, which has been specifically hardened against them.
It is our belief that this category of attack is sufficiently wide-spread that a
detailed analysis of contracts can provide value to voting system designers in
understanding the mechanisms at play and the effectiveness of these attacks in
a realistic setting. Instead of a light-touch on a range of systems, we have un-
dertaken a very detailed analysis of contract-based attacks in one representative
system—Punchscan [23]—which has been found to be vulnerable in this regard
[9, 17, 18].

2.3 The Punchscan Voting System

Fig. 1. A marked Punchscan ballot, showing top and bottom layers. In our notation,
this ballot is of type {YX,XY} and the position marked is R. It represents a vote for
Alice.

In a Punchscan election, two-layer paper ballots are used (See Figure 1). Both
layers have a serial number and a list of candidates. Additionally, a column of
symbols is printed on the top layer beside the candidates’ names and a row of
symbols is printed on the bottom layer underneath the candidates. These bottom
1 Other types of manipulation may include forcing the voter to cast a random vote [16]

or to vote against a particular candidate instead of for one. This latter distinction
is called destructive manipulation, as opposed to constructive, and can be accom-
plished through a combination of constructive manipulations. Forming a strategy
of constructive manipulations can be intractable in the worse-case for some scoring
protocols but it is trivial for plurality voting [4].



layer symbols are visible through circular holes in the top layer. A voter marks a
ballot by finding the symbol in the bottom row that corresponds to the symbol
beside their preferred candidate and daubs this position with a suitably-sized
Bingo dauber such that the ink is clearly visible on both layers of the paper.

After marking the ballot, the voter separates the layers of paper and is allowed
to keep either layer of paper as a receipt.2 The other layer is shredded without
anyone except the voter having seen its contents. The receipt is scanned and
then retained by the voter, who can use it to perform steps (ii) and (iii) in the
E2E construction from Section 2.1.

Both sets of symbols—the column on the top layer and the row on the bot-
tom layer—are randomly ordered on a per ballot basis. In other words, the top
symbols on a ballot could be X beside Alice and Y beside Bob or vice versa as
in the ballot in the figure; similarly with the bottom symbols. Thus if shown
the top layer in the figure, it is not possible to identify whether the symbols
on the bottom layer were ordered XY (resulting in a vote for Bob) or YX (a
vote for Alice).3 The same property holds when shown only the bottom layer.
For this reason, the voter can ostensibly show her receipt to anyone without
violating her privacy. Furthermore, unlike in conventional optical scan voting
systems, the scanner does not know which candidate the voter voted for (nor
would anyone who hacks into the scanner).

3 Extensive Form of the Ballot Casting Process

To analyse the effective privacy of Punchscan ballot receipts, we will formalize
the ballot casting process using game-theoretic conventions.4 Contract-based
attacks will ultimately involve three players—nature (N),5 the voter (V ), and
the adversary or influencer (I), whose role will be outlined in the next section. For
now, we consider the initial interaction between N and V in ballot casting. The
extensive form of this interaction is shown in Figure 2.6 Nature’s first two moves
are randomly drawn with equal probability from the action sets AN1 = {Top:
XY, Top: YX} and AN2 = {Bottom: XY, Bottom: YX} and will define the layout
of the ballot given to the voter.

2 It is important that either layer could be potentially kept. This is for security reasons
that we are deliberately omitting, as they are not essential to the results of this paper.
For full details, see [15, 23]

3 More properly, it is not possible without knowledge of a secret cryptographic key held
by a committee of election trustees, which ties the serial number to the information
needed to deobfuscate the vote and produce a verifiable tally.

4 All game theoretic conventions employed in this paper can be found in most intro-
ductory textbooks on the subject (e.g., [21]). Future footnotes will provide additional
background on game theoretic concepts as they are used.

5 When a game incorporates randomness, a special player called nature chooses ran-
dom actions from a known distribution as needed.

6 An extensive form diagram is a tree, with the root node defined as the first player
to move and a vertex defined for each action the player can take for this move.



Fig. 2. Extensive form of the ballot casting process, involving the voter and nature, in
a Punchscan election. The ballot casting process begins at N1 and ends at a candidate.
The dotted lines represent hidden information.

Upon observing N ’s moves, V chooses a position to mark, left or right, from
action set AV1 = {L, R}. In particular, V will choose an action such that a
particular candidate will be voted for. V then chooses to keep the top sheet
or bottom sheet: AV2 = {T, B}. This decision does not influence, of course,
which candidate was voted for, however the three previous moves all influence
the outcome. This will become important in section 5.2.

The privacy of the receipt comes from the fact that this model contains
hidden information. Depending on how V moves, either AN1 or AN2 will be
hidden from any observer of the receipt. If one were to only observe V ’s receipt
and not both moves by N , they could only determine the outcome to be in a set
of outcomes joined with a dotted line in Figure 2 but not know which outcome.
For all outcome sets, the state of the world could be a vote for Alice or Bob with
equal probability. For this reason, the privacy of a Punchscan receipt appears
very strong, however this does not imply coercion resistance.



4 Contract-based Attacks

Despite appearances to the contrary, Punchscan receipts can be exploited to bias
a voter’s choice. This is accomplished through a contract, which is presented
to V by the adversary. A contract specifies, for each possible receipt a voter
can construct, a payoff the voter will receive for that receipt. Assuming V is
utility-maximizing, V will construct her receipt in a way that maximizes her
payoff. Using this property, the adversary seeks to offer a contract that will
result, on balance, in more votes for his preferred candidate than the other
candidates. We study three proposed contracts that accomplish this for two-
candidate races, named for their authors: MN [18], BMR [9], and KRMC [17].
These three contracts are not central to their respective works, and thus certain
subtleties are glossed over by the authors which we will fill in.

An alternative to contracts suggested in the same literature are scratch-off
cards. A scratch-off card, in a race between Alice and Bob, would be a 2 × 2
matrix, with the rows marked X and Y, the columns L and R, and each cell would
contain a random T or B underneath a scratch-off layer. The voter is given a
new card and instructed to vote for Alice, scratch off the cell that corresponds
to the letter beside Alice’s name and the position where this letter appears on
the ballot received by the voter. The voter then retains the top or bottom layer,
as revealed. Both the receipt and the card must be returned to the adversary,
who checks that they are consistent. If the voter does not vote for Alice, the
voter must scratch off a cell that does not correspond to either Alice’s symbol
or the position of the asserted symbol on the bottom layer of the ballot. In both
cases, the voter will be caught with probability 0.5—if the scratch reveals T in
the former case or B in the latter.

Scratch-off cards are attractive since they fix the adversary’s ability to gain
votes for Alice, while we will show in Section 5.1 that contracts perform worse as
the number of candidates increases. By contrast, contracts are attractive because
they are informational and can be memorized by voters (especially in the case of
voting buying, where the voter has such an incentive). This eliminates the risk
of being caught using a scratch-off card or even giving the voter incriminating
evidence of the undue influence. In addition, contracts do not need to be secure
against physical tampering (scratch-off surfaces can be removed and reapplied).
Finally, contracts do not necessarily require the voter to rendezvous with the
adversary after the attack. The voter can simply report their serial number
and the adversary can retrieve the information from the public record (this
assumes the voter does not collude with other voters to misreport their serial
number as the serial number of another voter’s receipt that coincidently meets
the conditions of the contract; a difficult task even if allowed). Our purpose is not
to argue that contracts are better than scratch-off cards, merely that contracts
have enough interesting advantages to warrant their own thorough study.



4.1 Voter Coercion and Vote-Buying

It is useful to distinguish between voter coercion and vote-buying. As mentioned,
the contract will offer payoffs in the form of utility. These utilities are in either
two or three amounts with strict ordering: {u0, u1, u2 | u2 > u1 > u0}. Generally,
a vote-buying contract will promise positive utilities, such as u0 = $0, u1 = $5,
and u2 = $10, while a coercive contract will threaten negative utilities, such as
u0 as arson against a home, u1 as slashed tires, and u2 as nothing happening.
Generally participation in vote-buying is voluntary, while coercion is involuntary
as no rational voters would opt into a negative utility. We use the term vote-
buying to refer to a voluntary contract with positive utilities and coercion to
refer to an involuntary contract with at least one negative utility.

4.2 The MN Contract

The first contract we consider is due to Moran and Naor [18]. It is presented by
the authors as a vote-buying contract and is w.l.o.g. biased toward Alice.7 It is
as follows:

ContractMN =


u1 = πV (L)
u1 = πV (R, T |{XY, })
u1 = πV (R,B |{ , XY })
u0 otherwise

In our notation, this means that V is given a payoff (πV ) equal to u1 for
any receipt where the left position is marked, or a top sheet with symbols XY
and the right position marked, or a bottom sheet with symbol order XY and the
right position marked. Any other receipt is given u0. The underscores denote
information that is hidden due to the choice of T or B.

The normal form of the contract is shown in Figure 3(a).8 Since V , the row
player, only moves after observing the move made by N , we consider V ’s best
response to each of N ’s actions separately, which is the highest payoff to V
(the first number in the pair of payoffs) in each column. This assumes the voter
is utility-maximizing and is only interested in the highest payoff, a simplifying
assumption that we will reconsider in Section 5.3.

The second payoff in the pair, with a slight abuse of notation, is to the
influencer I and not to the column player N . I receives +1 when V votes for
7 All the contracts considered in this paper will be presented in their pro-Alice form

for consistency and easy comparison. Due to the symmetric nature of the ballot
casting process, any contract can be adopted for Bob instead.

8 The normal form of a game is a matrix with player 1’s action set as the rows and
player 2’s action set as the columns. The elements contain a tuple: the payoff to
player 1 and player 2 respectively for the selection of these actions (however note
the deviation from convention in this case). A player’s dominant strategy, if one
exists, is the selection of an action that will always yield a higher payoff than any
other action, and a weakly dominant strategy is the selection of an action that will
yield at least as high of a payoff as any other action.



(a) MN

(b) BMR

(c) KRMC

Fig. 3. Three pro-Alice contracts in normal form. Lined boxes are dominant best re-
sponses, while dotted boxes are weakly dominant best responses. The underlying game
is sequential with the column player moving first; thus each column is a subgame. No-
tational abuse: the first element of the payoff is to the row player, V , while the second
element is to the influencer I; not the column player N . This latter utility distinguishes
votes for Alice (+1) and for Bob (-1). The summary captures the payoff to the row
player, visualizing higher utilities as darker squares.

Alice and -1 when she votes for Bob. Since I’s payoffs are not a function of how
much money he is paying to V , this implicitly assumes that money is no object.
This is a simplification that we will rectify in Section 5.4.

Recall that N chooses each column with equal probability: 0.25. If the first
column is selected, the voter will receive u1 in any case. It is difficult to interpret
what these weakly dominant responses mean to a utility-maximizing voter but
let us assume the voter will choose randomly between them. This is more prob-
lematic in the second column, where the voter has three options: two of which
result in a vote for Bob and one for Alice. We could assume the voter, caring
only for the payoff, (i) chooses randomly between the two candidates or (ii)
chooses randomly between the three options. This has an effect on I’s expected



payoff. The third column is much like the second, while the final column is the
interesting one: both options produce a vote for Alice. Thus I is guaranteed a
vote for Alice whenever this column is chosen by N .

We can calculate the probability of this contract resulting in a vote for Alice
to be 0.625 under interpretation (i) and 0.54 under interpretation (ii). For all
outcomes, I will incur u1, thus the purchase of a full vote for Alice requires
manipulating 1.6 voters for a cost of (1.6)u1 per vote under (i) and 1.85 voters
under (ii) for a per vote cost of (1.85)u1. Although proposed as a vote-buying
contract, it also works for coercion.

4.3 The BMR Contract

The second contract is due to Bohli, Müller-Quade, and Röhrich[9], and is pre-
sented by the authors as a vote-buying contract:

ContractBMR =

u1 = πV (L, T |{Y X, })
u1 = πV (L,B |{ , XY })
u0 otherwise

The normal form of the contract is shown in Figure 3(b). A curiosity here is
the second column, which yields u0 regardless. If used coercively, with probability
0.25, the voter cannot escape punishment: there is no way, given a ballot like this
from N , to please I. For this reason, we rule out the BMR contract as viable for
coercion. The probability of the contract resulting in a vote for Alice is 0.625.
This outcome will cost I (0.75)u1 (assuming u0 is zero). The purchase of a full
vote for Alice requires manipulating 1.6 voters for a cost of (1.2)u1 per vote.
Thus this contract is better than the MN contract for vote-buying.

4.4 The KRMC Contract

The final contract is due to Kelsey, Regenscheid, Moran, and Chaum [17], and
is presented by the authors as a vote-buying contract:

ContractKRMC =


u2 = πV (L, T |{Y X, })
u1 = πV (L,B |{ , XY })
u1 = πV (R,B |{ , Y X})
u0 otherwise

The normal form of the contract is shown in Figure 3(c). The contract is
similar to BMR, only it uses graduated payoffs and includes an additional clause
to resolve the ambiguity in the second column of BMR. Every column con-
tains a strongly dominant response, leaving no ambiguity to a utility-maximizing
voter. It works for coercion, as well as vote-buying. The probability of the con-
tract resulting in a vote for Alice is 0.75. This outcome will cost the influencer
(0.5)(u1 + u2). The purchase of a full vote for Alice requires manipulating 1.3
voters for a cost of (0.5)(u1 +u2). Since u2 needs to be only epsilon greater than
u1, this contract is more effective than BMR and MN; more applicable than
BMR; and has less ambiguity than BMR and MN.



4.5 The Optimal Contract

Fig. 4. A summary of the three contracts, delimitated by possible clauses.

We have seen three contracts with different properties and expected votes
for Alice. KRMC is the best contract, and we seek to prove that it is optimal for
the two-candidate case. We also demonstrate that using more than three levels
of utility does not increase the expected votes, independent of the number of
candidates. Consider Figure 4. The leftmost column shows every possible (most
specified) clause that could appear in a contract. While clauses do not have to
be fully specified in each variable, such as the first clause in MN, such general
clauses are some combination of the most specified clauses: the combination of
the first, second, fifth, and sixth clauses in this case.

For each clause, the second column of the figure contains a small grid. This
grid is intended to be a visualization of the payoff matrix, like the summaries
in Figure 3. Let C be the number of candidates. The rows of the grid represent
the voter’s binary choice between the top or bottom layer as well as the C-way
choice of which position to mark; hence, 2C rows. The columns represent the
order of the symbols on the ballots. These orderings are random rotations, not
full permutations which simplifies the tallying process of Punchscan. There are
C2 possible orderings, not C!2, and hence C2 columns. Black cells represent the
positions in the payoff matrix that will be affected by adding the clause. For
example, if a contract offers a payoff of u1 for receipts matching the first clause
in the figure, u1 will be added to the two indicated cells in the payoff matrix for



the contract: cells (1,1) and (1,2). MN in Figure 3(a) is an example of contract
that includes such a clause.

The next three columns summarize the three contracts in the literature and
the payoffs they award for each clause. This information can be combined into
a concise visualization of the contract by layering the grids associated with each
clause on top of each other, where the darker squares represent a higher payoff
to V for that outcome. The concise form is shown in the bottom row of each
contract.

As a reminder of which outcomes result in a vote for Alice, these outcomes
are marked with black cells in the perfect contract in the bottom-left of the figure
(i.e., the elements in Figure 3 with payoffs of 1 to I). We refer to these cells as
the Alice region of the grid (and the inverse set of cells as the Bob region). The
perfect contract is not possible to achieve with the available clauses; however an
optimal contract will resemble it as closely as possible.

Continue to consider a contract as a grid, with rows 0 ≤ j ≤ 2C − 1 and
columns 0 ≤ k ≤ C2 − 1. Each element contains ui with i ≥ 0. We note three
properties:

P1: For each clause with utility ui in the contract, a column k̂ has ui added to
it in the Alice region.

P2: In P1, ui is always added to the region of each additional candidate in the
same row and some column other than k̂.

P3: In P2, the (set of) column(s) is either {k|b k
C c = b k̂

C c} or {k|k ≡ k̂ mod C}.

Most specified clauses include a top or bottom layer, T or B, and a marked
position that we will now call Pm, where 0 ≤ m ≤ C − 1, instead of the two-
candidate specific terms left and right. Clauses also include an ordering of sym-
bols to appear on the receipt. Consider an arbitrary ordering to be the canonical
ordering ô. The other possible orderings are generated by rotating this ordering
right or left, which we denote with functions ror() or rol(). For example, if
ô = XY then ror(ô) = Y X. This set has closure, such that rorC(ô) = ô (i.e.,
ror applied C times to an ordering is the same ordering).

With these notational conventions, we construct a simple, O(C) greedy al-
gorithm to select an optimal contract. An optimal contract should have three
properties: (O1) the highest expected votes for Alice from utility-maximizing
voters, (O2) no ambiguity (unlike MN), and (O3) no columns with all u0 (un-
like BMR). The algorithm selects a contract, w.l.o.g., for the first listed candidate
(i.e., a pro-Alice contract). There are many contracts satisfying the properties
for optimality—this algorithm finds one instance. It is given in Algorithm 1.

For analysis of the algorithm, we explain each line in terms of the visualization
of a contract as a grid. Line 1 of the algorithm adds u1 to the Alice region in
column 1 of the contract’s grid. All clauses will add u1 to the Alice region
somewhere (P1), thus this clause is no worse than any other clause with respect
to O1, and it is strictly better than adding no clauses with respect to O3.

Lines 2-3 add u1, on each iteration, to the Alice region in a new column,
which is strictly better than not adding additional clauses with respect to O2.



Algorithm 1: Optimal Contract Generation
Add to contract: u1 = πV (P0, B|{ , ô})1

for m from 1 to C − 1 do2

Add to contract: u1 = πV (Pm, B|{ , rorm(ô)})3

for m from 1 to C − 1 do4

Add to contract: u2 = πV (Pm, T |{rolm(ô), })5

Add to contract: u0 = otherwise6

Each clause never adds more than one u1 to any column, whether in the Alice
region or not (following {k|k ≡ k̂ mod C} in P3), thus it is no worse than any
other group of clauses that could be provided. After completion of the loop,
every column contains exactly one u1, satisfying O3.

Lines 4-5 add additional clauses. To ensure O2, additional clauses have payoff
u2 and are non-overlapping in the columns that they affect. On each iteration,
a clause adds u2 to the Alice region, making it the best response over the u1

already present in the column. Furthermore, the distribution of the added clauses
follows {k|b k

C c = b k̂
C c} in P3, which ensures that the set of each u2 added to

another candidate’s region (P2) is disjoint from the set of columns where Alice is
the best response. Taken together, the addition of these clauses is strictly better
than not adding the clause with respect to O1.

Line 6 suggests that no more clauses can be added that would improve the
contract with respect to O1 and the contract should be closed. Consider the
addition of a clause with ui. By P1, this would add ui to the Alice region in
some column. For it to improve the contract with respect to O1, the Alice region
of this column must not already contain the highest utility and i must be greater
than the highest utility present. All such columns contain u2; thus all candidate
clauses must be u3. However by P2, this would also add u3 to the regions of
the other candidates in other columns. Given the distribution of this addition by
either type in P3, this would add u3 to a column that contains u2 in the Alice
region, making Alice no longer a best response for that column. Thus additional
clauses cannot improve the contract with respect to O1.

Recall that Algorithm 1 finds one instance of the many contracts satisfying
the properties for optimality. Running this algorithm for the two-candidate case
produces the following contract:

Contractopt =


u2 = πV (R, T |{Y X, })
u1 = πV (L,B |{ , XY })
u1 = πV (R,B |{ , Y X})
u0 otherwise

This contract is equivalent to KRMC with respect to O1, O2, and O3.
Therefore since the output contract is optimal, KRMC is as well.



5 Extending the Base Model

5.1 Multiple-Candidate Contracts

For our first extension to the basic contract, we consider the optimality of a
contract as the number of candidates is increased from two to an arbitrary
number, C, of candidates. P1, P2, and P3 still hold. For an arbitrary C, an
optimal contract for Alice can be constructed from the union of the first C
columns with payoff u1 and every additional Cth column with payoff u2.

Fig. 5. The advantage of an optimal contract over a random selection as C, the number
of candidates, grows. As seen, the advantage appears asymptotic to 0 in the number
of candidates.

Figure 5 shows that the advantage an optimal contract offers over forcing
a utility-maximizing voter to vote for a random candidate. The two-candidate
case had a probability of 75% of resulting in a vote for Alice, which is a 25%
advantage over a random choice between two candidates. The probability of a
vote for Alice in the three-candidate case is 56%, which is only a 22% advantage
(over a random choice between three candidates). Likewise, as C increases, the
adversary’s advantage decreases.

5.2 Reordering the Game

We now consider the order of play. If V were to choose either R or L prior to N
choosing the ballot layout, the candidate voted for would be random. Enforcing
this in a contract, without any additional clauses, could be an effective denial of
service attack—but it is no better than simply paying the voter to not vote at
all. Thus if V is to vote with intention, she can only choose between R and L
after observing the moves by N . However the outcome of the game is invariant
to whether V chooses T or B, therefore this move could be safely relocated in
the sequence of events. If it was chosen by V prior to observing the moves by N ,
then no contract can be formed that would favour Alice or another candidate.
In other words, this simple change solves the problem.



To see why, consider again the properties in Section 4.5. In this new extensive
form, P1 and P2 still hold. However P3 does not. If the top sheet is selected,
then the set of columns in P3 will only be {k|b k

C c = b k̂
C c}. Likewise, if the

bottom sheet is selected, the set of columns will only include {k|k ≡ k̂ mod C}.
With this symmetric pairing of columns, there is no way to asymmetrically win
a column for Alice without losing one to another candidate.

Requiring the voter to select the top or bottom layer before seeing the ballot is
a known solution, and the Punchscan procedure has been subsequently modified
to reflect this change. However this change does cause the privacy of the system to
be contingent on poll worker procedure, which is a weak foundation for something
as critical as ballot secrecy. From the first author’s experience, poll workers may
not follow procedures exactly, especially when deviation does not affect the voters
ability to cast their ballot and the poll-workers do not have a solid mental model
of why a procedure is important.

In general, removing decisions that a voter must make during the voting
process, especially arbitrary choices made after observing the actions selected
by nature can help resolve issues of coercion. However one choice can never be
eliminated: selecting a candidate to vote for. For some obfuscation mechanisms
in E2E systems, this decision alone may be exploitable. Thus, there is no simple
trick—vote casting procedures must always be carefully examined.

5.3 Voter Types

So far, we have considered V to be utility-maximizing and thus follows the con-
tract fully. However, this is not necessarily the case, especially for vote-buying.
There may be some voters who will forgo payment and always vote for Alice
or Bob. In this case, they are still utility-maximizing: they receive utility that
is external to the contract from their political convictions or expected benefits
from an elected candidate. Our use of the term utility-maximizing should be
interpreted as maximizing only the utility internal to the contract. There may
be other “vengeful” voters who would punish the adversary whenever possible:
for example, by always choosing to vote contrary to the adversary when given
the choice. In the next section, we also consider opportunistic voters who will
sell their vote if they are already intending to vote for the adversary’s candidate.
In all of these cases, the true type of the voter is hidden from the influencer.

Consider a simple split between the fraction of utility-maximizing voters (α)
and vengeful voters (1−α) in the coercion model. The adversary will accept any
payoff in the set of best responses. In MN, the expected votes for Alice from a
vengeful voter is 0.25. Thus to make ground for Alice, the following expression
should hold: (0.54)α + (0.25)(1 − α) > 0.5. The means α > 0.86 or at least
86% of the voters need to be utility-maximizing for the attack to work. Using
the same analysis for BMR, recall that in BMR it is possible for V to obtain a
layout from N that has u0 as a payoff for all moves by V . As a result, a vengeful
V can always vote for Bob, even if the payoff is u0 since V could have plausibly
received a bad ballot type. As a result, α > 0.8 which means BMR can tolerate



a higher proportion of vengeful voters than MN while maintaining profitability.
For KRMC, a vengeful voter can at best vote for Bob on half of the columns (by
receiving u1 on the fourth column). Thus any α > 0 will produce profitability
for KRMC, making it the most resilient of the three.

5.4 Money is an Object

Consider the vote-buying model. In this case, voters could simply choose to reject
the contract, receive u0, and vote for either Alice or Bob. However, occasionally
such strategies will coincidentally allow them to meet the terms of the contract
and be paid. Say that the fraction of voters rejecting the contract and voting for
Alice is pa and for Bob is pb. The fraction that are utility-maximizing and opt
into the contract is, as before, α, and the vengeful voters make up the remainder.
Unlike in the coercive case, vengeful voters will accept u0 and thus act like voters
in pb. For KRMC, the expected amount of money paid by the adversary to a
voter of a hidden type is,

0.5(u1)(pa) + 0.25(u2)(pa) + 0.25(u1)(pb) + 0.25(u2)(pb) + 0.5(u1)(α)
+0.5(u2)(α) + 0.25(u1)(1− pa − pb − α) + 0.25(u2)(1− pa − pb − α)

Before we assumed that money was no object, so the value of this expression
is irrelevant. However if money does matter, then the adversary must ensure that
he is not paying more for a vote than it is worth to him. The difference between
a voter in pa and α can be rephrased: the latter place less value on their vote and
thus will choose to accept a payoff that is higher than the amount of value they
place on their vote. Let Uv be the value of u1 such that α voters will accept the
contract; in other words, the maximum value a voter in α places on their vote.
Since u2 only needs to be marginally greater than u1 (i.e., u2 = u1 + ε), we can
assume for simplicity that they are equivalent. Furthermore, assume that pa is
the same as pb, since close elections will more plausibly have attempts at undue
influence. This reduces the equation above to

Uv(0.67 + 0.33(pa) + 0.67(α)).

For it to be profitable for the vote buyer, he expects to influence a share of
0.75(α) votes in favour of Alice, and if a vote is worth on average Ub to the buyer
then

Uv(0.67 + 0.33(pa) + 0.67(α)) < Ub(0.75(α)).

This expression forms a ratio between how much a vote is worth to the
coercer and how much it is worth to the voter, and how large the ratio must be
for KRMC to be profitable. For example, if pa = pb = 0.45 and α = 0.10, the
ratio is 8.83. This means that if 10% of voters value their vote at less than, say,



$10, the buyer should only exploit this opportunity if a vote gained is worth at
least $89 to him. For three candidates, pa = pb = pc = 0.30 and α = 0.10, the
vote should be worth at least $96 to him.

6 Future Work and Concluding Remarks

We have shown how game theoretic-models can be applied to analysing coercion
contracts in E2E voting systems. We developed an algorithm for devising optimal
contracts, proved that KRMC is optimal in the two candidate case, and found
that the effectiveness of contracts decrease with the number of candidates are
added. We also show that no more than two levels of utility are needed and that
contracts are costly for the adversary.

We conclude with a few avenues for future work. In paper-based elections,
where unrecoverable errors are possible, voters are typically given the option to
spoil a ballot and receive a new one. Future work could examine the impact of
spoiling on coercion contracts in realistic scenarios, like being allowed up to two
spoiled ballots: some voters will spoil to try and receive higher payoffs, others
may spoil to avoid meeting the adversary’s demands. Voters must strategize
whether spoiling is likely to increase or decrease their fortunes when the payoffs
are ternary or when there are multiple contests on the ballot, each with its own
payoff. It may also be plausible for the adversary to observe when the voter
spoils a ballot, and he may adjust his own strategies accordingly.

Our definition of optimality assumes voters are utility-maximizing, and we
later study the performance of these contracts in a setting for which they were
not optimized: voters with hidden types. We conjecture that reoptimizing the
contracts for this setting would not change the contract; however, we leave proof
of this for future work. A final topic for further exploration is the potential
for adversaries to employ screening techniques to differentiate between voters
with hidden types. For example, the payoff could include a contribution to one
candidate’s campaign to prevent supporters of another candidate from accepting
the contract if their receipt coincidentally meets its conditions.

We hope our study of contracts in Punchscan, and the tools we have used
in our analysis, is of assistance to the designers of E2E systems. The more we
understand these attacks, the easier it will be to design against them.
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