
On the Security of Ballot Receipts in E2E Voting
Systems

Jeremy Clark, Aleks Essex, and Carlisle Adams

School of Information Technology and Engineering (SITE),
University of Ottawa

{jclar037,aesse083,cadams}@site.uottawa.ca

Abstract. This paper examines and compares the security of ballot receipts in three
end-to-end auditable (E2E) voting systems: Prêt à Voter, Punchscan, and Three-
Ballot. Ballot receipts should have two properties: from a privacy perspective, they
should provide no information as to how the ballot was cast, and from an integrity
perspective, they should provide no information that would assist an adversary in
tampering with the tallying process. We find that Prêt à Voter and Punchscan
have similar security properties with respect to ballot receipts, and provide no non-
negligible information on the receipt itself that could compromise privacy or security
(assuming the underlying cryptography is secure). However we show that ThreeBal-
lot receipts leak partial information that is useful for compromising voter privacy
and the integrity of the tally.

1 Introduction

In recent years, there has been an increased interest in cryptographic voting systems de-
signed to protect voter privacy and provide voter-verifiable integrity. A set of voting guide-
lines published by the US Election Assistance Commission in 2005 includes a section on
“end-to-end cryptographic independent verification” (E2E) voting systems [1]. The criteria
for an E2E system includes, but is not limited to, the use of cryptography to secure voted
ballots prior to tallying, the issuing of ballot receipts to voters, and an end-to-end audit
mechanism for independent verification of the election results. The scope of this paper is
limited to a security analysis of the ballot receipts in three E2E systems. In keeping with
[1], we propose that any E2E ballot receipt should satisfy the following two properties:

Property 1. The ballot receipt should provide no information that would increase an ad-
versary’s ability to determine how the ballot was cast.

Property 2. The ballot receipt should provide no information that would increase an ad-
versary’s ability to corrupt ballots without detection.

The former is a privacy property designed to ensure a secret ballot. In section 2, we
will define what is meant by ‘no information’ and derive an attack game to test for this
property. In section 3, we will apply it to the three E2E systems. The second property is
critical to preserving the integrity of the election. Section 4 and 5 will examine the three
systems with respect to this property, both in terms of the risk to the adversary of being
caught and the potential benefits to be gained.



We compare the following three systems: Prêt à Voter [4, 11], Punchscan [8, 2], and
ThreeBallot [10, 9]. A Prêt à Voter ballot contains a candidate list in a randomized order.
To vote, the voter simply places a mark beside their chosen candidate. The candidate list
is then detached and shredded while the position of the mark is recorded and kept by the
voter as a receipt. The receipt also contains a mix network onion which can be used to
reconstruct the destroyed information during the tally.

Punchscan uses two sheets of paper. The top sheet contains a fixed-order candidate
list, a set of symbols beside the names in a randomized order, and a series of holes. The
bottom sheet contains the same set of symbols, also in random order, printed such that they
show through the holes. To vote, the voter notes the symbol located beside their chosen
candidate, then finds the hole containing the same symbol and daubs it with ink—filling
in the hole and leaving a rim of ink around it. The voter shreds one of the sheets, and the
marked positions on the other sheet are recorded by the poll worker. This sheet is then
returned to the voter to be kept as a receipt. The receipt contains a serial number which
can be used to reconstruct the vote from the half-ballot during the tally.

ThreeBallot employs a “multiballot,” which is simply a set of three conventional ballots.
To vote, the voter makes a mark for each candidate once on any of the three ballots and
then completes her vote by voting a second time for the chosen candidate. The voter retains
a copy of one of the three ballots as a receipt, and then the three ballots are separated and
deposited into a ballot box. For the purpose of this paper, we consider ThreeBallot to be
an E2E system because it is designed to provide the same properties as E2E systems [9],
however it should be noted that it accomplishes this without the use of cryptography and
therefore would not strictly meet the EAC’s specification [1].

2 A Ballot Receipt Attack Game

The first property of an E2E ballot receipt is that it protects voter privacy by not revealing
which candidate(s) the voter chose. However it is important to qualify the amount of
information about the voter’s choice that is not revealed by a ballot receipt.

Definition 2.1. A ballot receipt contains Insufficient Information if it cannot be used
in any manner to prove the cast vote of its respective ballot with certainty.

Definition 2.2. A ballot receipt contains No Non-negligible Information if it cannot
be used in any manner to guess the cast vote of its respective ballot with non-negligible ad-
vantage over a random guess by a PPT-bounded (probabilistic polynomial-time) adversary.

The former definition is less strict than the latter. Prêt à Voter, Punchscan, and Three-
Ballot all generally meet the first definition. Note that in the case of ThreeBallot, with
both the ballot receipt and the bulletin board of all marked ballots, it has been shown that
ballot receipts may not meet the first criterion when the number of contests and candi-
dates is sufficiently high [12]. Countermeasures have been suggested [10]. The analysis in
this paper is concerned with security properties that exist even at the base case of 1 contest
and 2 candidates. In order to test the systems against the second definition, we formulate
an attack game. Attack games are common in establishing the formal provable security of
cryptographic systems (i.e., [6]). Our attack game is outlined in Algorithm 1.



Algorithm 1: Attack Game with a Random Voting Oracle
Oracle:1

Choose random candidate c∗ ∈ C.2

end3

Oracle:4

Run voting function r∗ = V(c∗) as follows:5

If applicable, choose random permutation p ∈ P .6

If applicable, choose random marking style s ∈ S.7

Generate ballot mark m for c∗.8

If applicable, choose random ballot fraction f ∈ F .9

Return receipt r ⊆ 〈p, s, m, f〉.10

end11

Adversary:12

Run some guessing algorithm cg = A(r∗).13

Return guessed candidate cg.14

end15

Oracle:16

if cg = c∗ then17

Return TRUE.18

else if cg 6= c∗ then19

Return FALSE.20

end21

The attack game involves two participants: an adversary who is PPT bounded and a
random voting oracle. When queried, the random voting oracle chooses a random candidate
to vote for and then performs the voting function. The exact nature of the voting function
changes from system to system. In Prêt à Voter, the order of the candidates, p, is randomly
generated and the receipt contains the position of the mark: r = 〈m〉. For Punchscan, the
order of the symbols for both sheets, pt and pb, is chosen randomly, either the top or
bottom sheet, f , is randomly chosen to be kept, and the receipt contains the position of
the mark, the permutation of the kept sheet, and which sheet was kept r = 〈m, pf , f〉. For
ThreeBallot, there is more than one way to mark the multiballot in order to vote for a
given candidate. A marking style, s, is randomly chosen, and either the first, second, or
third ballot is kept (f). A ThreeBallot receipt contains the position(s) marked on the kept
ballot: r = 〈m〉.

Given a receipt from the oracle, the adversary’s goal is to guess which candidate was
voted for. The adversary may employ some algorithm to assist in this guess. The oracle will
evaluate the guess and declare it correct or incorrect. For an election with N candidates,
we define the informational advantage of having a ballot receipt as,

Adv =
∣∣∣∣ 1
N
− Pr[c∗ ← A(r∗)|r∗ = V(c∗) ⊆ 〈m, pf , f〉]

∣∣∣∣ . (1)



If a ballot receipt contains no non-negligible information, the adversary’s algorithm will
be equivalent to random guessing—that is, a probability of correctness of 1/N and thus no
more than a negligible (ε < 1/2N ) advantage.

This attack game is a base case, as it only considers the amount of information leaked
by the marks on the receipt. This minimal level of security should be considered necessary
but not sufficient for a voting system. We provide the formal framework of an attack game
to illuminate the analysis in this paper, but we also hope it will be utilized in future
security analysis involving stronger attacks. For a voting system to be provably secure,
other potential information sources including the receipt’s serial number or cryptographic
onion, the set of other published post-election receipts/ballots, and any other information
revealed in the auditing process must also be shown to reveal only negligible information [7].
The random voting oracle is also idealized as the random operations will not be perfectly
uniform selections in practice. Rather, they will be either psuedorandom selections based
on a secret key or product of the voter’s choice. If the underlying pseudorandomness or
cryptographic primitives are insecure, the adversary may be able to mount an attack, and
similarly if voters are psychologically predisposed to certain selections or primed to make
them.1

3 Mark Information

3.1 Prêt à Voter and Punchscan

In this section, we consider the adversary’s advantage in the attack game of Algorithm 1
with a Prêt à Voter and a Punchscan random voting oracle. Beginning with a Prêt à Voter
ballot, recall that the candidate names are randomized. For N candidates, there are N !
equally probable permutations of the names. If a receipt is marked in a given position, the
number of permutations that would result in this marked position counting as a vote for
the ith candidate is (N−1)!. Therefore the probability that any possible mark corresponds
to the ith candidate is,

Pr[r = V(ci),∀i] =
(N − 1)!
N !

=
1
N
. (2)

A Punchscan ballot has two random permutations of indirection pointers—one permu-
tation for the top sheet, and one for the bottom. For N candidates, there are (N !)2 equally
probable permutations for the full ballot (i.e., both sheets). The receipt—one sheet without
the other—contains N ! permutations itself. If it is marked in position i, there are (N − 1)
permutations on the other sheet that would map the vote to a specific candidate. Taken
together, the probability that any possible mark corresponds to the ith candidate is,

1 This issue does not emerge in Prêt à Voter as voters are not required to make any random
selections. A recent Punchscan case study [5] found that 85% of voters choose the bottom sheet
instead of the top, however this particular information is not useful for attacking voter privacy.
In ThreeBallot, voters are required to make random choices about how to mark the ballot along
with which fraction to keep. Taken together, this could facilitate privacy attacks along with
integrity attacks.



Pr[r = V(ci),∀i] =
(N − 1)!2

N !(N − 1)!
=

1
N
. (3)

The results of these equations are perhaps intuitive; the marks on both a Prêt à Voter
and a Punchscan ballot receipt provide no information as it is equally probable that the
mark corresponds to any of the candidates on the ballot. The security of the marks is
premised on the use of secure underlying cryptographic primitives to generate the random
permutations.

3.2 ThreeBallot

We now consider ThreeBallot by first recalling that a ThreeBallot election need not use
three ballots. In a ThreeBallot election with B ballots (where every candidate receives
B − 2 votes, and the chosen candidate receives B − 1) and N candidates, the number of
ways of marking a multiballot for a particular candidate is:

M =
(

B

B − 1

)(
B

B − 2

)(N−1)

. (4)

M multiballots contain R potential receipts:

R = N ·B ·M. (5)

Consider the base case of a 3 ballot multiballot with 1 contest of 2 candidates. There are
9 ways of marking the multiballot for each candidate, creating 54 equally probable receipts.
Figure 1 shows the complete set. In the notation we are using, a receipt of {0, 1} indicates
no vote recorded for candidate A and a vote recorded for candidate B. As denoted in
Figure 1 as shaded receipts, there are 12 equally probable ways of receiving a {0, 1} receipt
if candidate B was voted for, while there are only 3 equally probable ways if candidate A
was voted for. Thus this particular receipt leaks information. Similarly {1, 0} is 12 to 3 in
favor of candidate A. Both {0, 0} and {1, 1} do not leak information as they could have
come from candidate A or B with equal (6 to 6) probability.

The adversary can exploit the information leaked by the ballot receipts with asym-
metrical probabilities by using Algorithm 2. In the base case of three ballots and two
candidates, an attacker using this algorithm gains an advantage of 16.67% over that of a
random guess. Figure 2-a shows the expected advantage for three ballots and an increasing
number of candidates. Figure 2-b shows the expected advantage for two candidates and an
increasing number of ballots.

Algorithm 2: Adversary’s Algorithm
if r = {0, 0, . . . , 0} then1

Guess random candidate: ci ∈ C.2

else3

Guess random candidate with marked vote: ci ∈ Cv|Cv ⊂ C s.t. ri = 1 ∀i4



Fig. 1. The 18 possible ways to mark a ThreeBallot multiballot in a two-candidate election (9 for
each candidate). The shaded ballots demonstrate that the probability of getting a {0, 1} ballot
receipt is not equal for both candidates.

Fig. 2. Adversary’s advantage over a random guess at determining the candidate voted for from
a ThreeBallot receipt with increasing (a) number of candidates and (b) number of ballots in the
multiballot.

ThreeBallot could be made secure against this attack by only permitting a suitable
subset of the possible marking patterns, such that all receipts occur with equal probability
for all candidates. Unfortunately by definition of how votes are marked, no suitable subset
can exist. Every marking pattern must by necessity contain at least one receipt that is
probable for the chosen candidate. Furthermore, every marking pattern that contains at
least one receipt that is probable for another candidate must be complemented by at least
two receipts that is probable for the chosen candidate. This should be apparent from Figure
1 for the base case; the only {0, 1} receipts possible for candidate A occur in multiballots
with two {1, 0} receipts.

4 Preventing Ballot Tampering with Receipts

The second property of a ballot receipt is that it should not provide information useful
to an adversary wanting to tamper with recorded ballots before they are tallied. In E2E



systems, the receipts may be compared to the inputs of the tallying function to help ensure
the integrity of the tallying process. In ThreeBallot, the tallying function is simply the
sum of the votes on the set of all ballots minus the number of votes. Since a random third
of the ballots on the bulletin board have copies circulating as receipts, an adversary who
modifies one ballot faces a 1/3 chance of being caught if every voter checks her receipt.

It was orginally thought that a ThreeBallot receipt contains no useful information, and
that an adversary will not gain any advantage by merely seeing the receipt [9]. Voters with
no intention of checking their ballot themselves might be encouraged to give a copy to an
organization who will check on their behalf. Unfortunately this is useful information for
attacking the integrity of a ThreeBallot election. Each receipt has a serial number and if
the adversary sees a receipt, she will not modify the corresponding ballot on the bulletin
board when choosing a ballot to tamper with. If she knows a receipts, the probability of
being detected when modifying one ballot (out of the set of B ballots) is

(
B
3 −a

B−a

)
.

In the extreme case, the adversary has seen all the receipts (a = B/3) and her prob-
ability of being caught is zero. Essentially the adversary is partitioning the set of posted
ballots into two subsets: one of known receipts and one of unknown status. She will always
draw a ballot to tamper with from the second subset. Every receipt she sees moves a ballot
from the second subset to the first, and thus every receipt leaks useful information. At
a philosophical level, ThreeBallot’s mechanism for receipt checking fails because cut-and-
choose protocols require the choice to be unpredictable [3] and every ThreeBallot receipt
reveals useful information about the choice. This problem does not arise in Prêt à Voter
or Punchscan because all the inputs to the tallying function are receipts.

5 Cost-Benefit Analysis of Tampering

In the previous section, we examined the scenario where an adversary modifies the inputs
to the tallying function. The probability of getting caught tampering with election results
can be thought of as a cost to the adversary. We have shown that revealing Prêt à Voter
and Punchscan receipts to an adversary does not decrease the cost to the adversary, while
every ThreeBallot receipt does (to the extreme case where the adversary has seen all the
receipts and the cost is zero). However our analysis is not complete unless if we also consider
how to minimize the benefit of the attack to the adversary. It is acceptable that a voting
system has a lower cost if (and only if) the associated payoff is lower as well. The best
system design maximizes the cost and minimizes the benefit of tampering.

In Prêt à Voter and Punchscan, the best an adversary can hope to achieve is apply
a random mapping between which candidate was voted for and which candidate gets the
vote. If there are two candidates, Alice and Bob, the adversary can make a vote for Alice
count for Bob only by also making a vote for Bob count for Alice. If the adversary is
attempting to rig the election for Bob, she may inadvertently take votes from Bob and
give them to Alice. Unless if she knows the vote associated with the receipt, the benefit of
tampering with Prêt à Voter and Punchscan tally-inputs is uncertain.

In the case of ThreeBallot, an adversary can explicitly take a vote away from one
candidate and give it to another candidate. In order to ensure the total number of votes
does not exceed the number of cast ballots, the adversary may have to modify two ballots:
take a vote from a candidate on one ballot and give it to another candidate on a second



ballot. Either way, a tampering attack on ThreeBallot is more beneficial than on Prêt à
Voter or Punchscan; and it is at a lower cost as well.

6 Concluding Remarks

We have formulated a basic attack game that demonstrates that ThreeBallot receipts can
leak partial information about which candidate was voted for. For this reason, it cannot be
asserted that ThreeBallot receipts contain no non-negligible information about how a voter
voted. This can, however, be asserted of both Prêt à Voter and Punchscan, if we assume
the underlying cryptography is secure.2 In addition, we have demonstrated that merely
showing a ThreeBallot receipt to an attacker compromises the integrity of the tallying by
a non-negligible quantity. This property does not exist in a Prêt à Voter or Punchscan
election. Finally, we show that if an attacker attempts to rig an election for her preferred
candidate, tampering with a ThreeBallot election yields greater benefit than Prêt à Voter
or Punchscan. For these reasons combined, the use of either Prêt à Voter or Punchscan in
an E2E election appears to be a Pareto improvement3 over ThreeBallot with respect to
the security of ballot receipts.

References

1. Voting system performance guidelines. 2005 Voluntary Voting System Guidelines, Volume 1,
United States Election Assistance Commission, Version 1.0, 2005.

2. K. Fisher, R. Carback and A.T. Sherman. Punchscan: introduction and system definition of a
high-integrity election system. Proceedings of Workshop on Trustworthy Elections 2006.

3. D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditionally secure protocols. Pro-
ceedings of the twentieth annual ACM Symposium on Theory of Computing, 1988.

4. D. Chaum, P.Y.A. Ryan, and S. Schneider. A practical, voter-verifiable election scheme. Tech-
nical Report CS-TR-880, University of Newcastle upon Tyne, 2004.

5. A. Essex, J. Clark, R. Carback, and S. Popoveniuc. Punchscan in practice: an E2E election
case study. Proceedings of Workshop on Trustworthy Elections 2007.

6. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sci-
ences, 28:270299, 1984.

7. C. Karlof, N. Sastry, and D. Wagner. Cryptographic voting protocols: a systems perspective.
Proceedings of the 14th USENIX Security Symposium, 2005.

8. S. Popoveniuc and B. Hosp. An introduction to Punchscan. Proceedings of Workshop on Trust-
worthy Elections 2006.

9. R. Rivest. The ThreeBallot voting system. October 1, 2006. Online:
http://theory.csail.mit.edu/∼rivest/Rivest-TheThreeBallotVotingSystem.pdf

10. R. Rivest and W.D. Smith. Three Voting Protocols: ThreeBallot, VAV, and Twin. Proceedings
of USENIX/ACCURATE Electronic Voting Technology (EVT) 2007.

11. P.Y.A. Ryan and T. Peacock. Prêt à Voter: a systems perspective. Technical Report CS-TR-
929, University of Newcastle upon Tyne, 2005.

12. C.E.M. Strauss. A critical review of the triple ballot voting system. Part 2: cracking the triple
ballot encryption. Draft Version 1.5, October 8 2006. Online:
http://cems.browndogs.org/pub/voting/tripletouble.pdf

2 Even if it were not, it is unclear whether the system would reach unicity. So long as the keyspace
is larger than the permutation space, there will be spurious keys.

3 Improving one or more aspects without worsening any others.


